
Discovering and Segmenting Unseen
Objects for Robot Perception

Christopher Xie

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington
2021

Reading Committee:
Dieter Fox, Chair

Siddhartha Srinivasa
Ali Farhadi

Program Authorized to Offer Degree:
Computer Science and Engineering

© Copyright 2021

Christopher Xie

University of Washington

Abstract

Discovering and Segmenting Unseen Objects for Robot Perception

Christopher Xie

Chair of the Supervisory Committee:

Professor Dieter Fox
Computer Science and Engineering

Perception lies at the core of the ability of a robot to function in the

real world. As robots become more ubiquitously deployed in unstructured

environments such as homes and offices, it is inevitable that robots will en-

counter objects that they have not observed before. Thus, in order to interact

effectively with such environments, building a robust object recognition

module of unseen objects is valuable. Additionally, it can facilitate down-

stream tasks including grasping, re-arrangement, and sorting of unseen

objects. This is a challenging perception task since the robot needs to learn

the concept of “objects” and generalize it to unseen objects.

In this thesis, we propose different methods for learning such perception

systems by exploiting different visual cues and learning data without man-

ual annotations. First, we investigate the use of motion cues for this problem.

We develop a novel neural network architecture, PT-RNN, that leverages

optical flow by casting the problem as object discovery via foreground mo-

tion clustering from videos. This network learns to produce pixel-trajectory

embeddings such that clustering them results in segmenting the unseen

objects into different instance masks. Next, we introduce UOIS-Net, which

separately leverages RGB and depth for unseen object instance segmenta-

tion. UOIS-Net is able to learn from synthetic RGB-D data where the RGB

is non-photorealistic, and provides state-of-the-art unseen object instance

segmentation results in tabletop environments, which are common to robot

manipulation. Lastly, we investigate the use of relational inductive biases in

the form of graph neural networks in order to better segment unseen object

instances. We introduce a novel framework, RICE, that refines a provided

instance segmentation by utilizing a graph-based representation.

We conclude with a discussion of the proposed work and future direc-

tions, which includes a vision of future research that leverages the proposed

work to bootstrap a lifelong learning mechanism that renders unseen objects

as no longer unseen.

2

Acknowledgements

First, I would like to thank my advisor Dieter Fox for his support, advice

and wisdom throughout my PhD. He graciously accepted me into his group

during my fourth year, and since then, I have learned a great deal about

how to conduct research. His ability to keep up-to-date in the robotics

and computer vision subfields is incredibly impressive. His creativity is

remarkable, which helped me navigate through the many roadblocks I

encountered in my research. Perhaps most importantly, he has shown

me how to ask deep, meaningful questions when digging into research

problems. I would also like to thank my committee members including

Siddhartha Srinivasa, who I co-authored a paper with, Ali Farhadi, and

Ming-Ting Sun.

I would also like to thank the numerous mentors I have been lucky

to have throughout my graduate school journey. In particular, I would

like to thank Emily Fox for showing me how to effectively communicate

my ideas to other researchers, and Zaid Harchaoui for providing many

great nuggets of advice and introducing me to the field of computer vision.

Thanks to Avleen Bijral, Matthew Brown, and Ricardo Martin-Brualla for

3

their mentorship during my internships at Microsoft and Google. Finally,

a special thanks to Yu Xiang and Arsalan Mousavian for their long-term

collaboration and mentorship that spanned many projects within this thesis.

Next, I would like to thank the collaborators I have worked with at

UW, including William Agnew, Keunhong Park, and Alex Tank, and the

members of the UW Robotics and State Estimation (RSE) Lab. They were

the source of many great conversations and collaborations, and I learned a

lot from our shared experiences.

I would like to thank friends and family, who provided an escape from

the stress and pressure of a PhD program. Thanks to (listed in no particular

order): Max, Rahul, Maarten, Meldrew, Mondrew, Carrison, YanMi, I-Lyds,

Rohin, Lanssie, Jeannie, Jason, Justin, Phil, among many others. A big thanks

to my mom, Su Li, and dad, ZuQi Xie, for their unwavering support in my

pursuit of higher education, and my brother, Walt, for always being the best

big brother one can ask for (and helping me land my post-graduation job!).

Last but definitely not least, none of this would be possible without the

support of my amazing wife Amanda. She cheered me on during the good

times and kept me sane and grounded through the rough patches. Her

energy and fervor for bettering herself is a limitless source of motivation

and inspiration for me. It was this source that enabled me to grow and

accomplish my goals these past six years.

4

DEDICATION

To my amazing, supportive and beautiful wife, Amanda, who never ceases

to inspire me.

5

Contents

1 Introduction 16
1.1 Computer Vision vs. Robot Vision in Today’s World 18
1.2 Leveraging Large-Scale Data without Manual Annotation . . 21
1.3 Dissertation Overview . 23

2 Object Discovery in Videos as Foreground Motion Clustering 25
2.1 Related Work . 28
2.2 Method . 29

2.2.1 Encoder-Decoder: Y-Net 30
2.2.2 Foreground Prediction 31
2.2.3 Trajectory Embeddings 32
2.2.4 Loss Function . 36
2.2.5 Trajectory Clustering 38

2.3 Experiments . 38
2.3.1 Ablation Studies . 40
2.3.2 Comparison to State-of-the-Art Methods 41

2.4 Discussion . 44

3 Unseen Object Instance Segmentation for Robotic Environments 46
3.1 Related Works . 49

3.1.1 Category-level Object Segmentation 49
3.1.2 Instance-level Object Segmentation 50
3.1.3 Sim-to-Real Perception 52

3.2 Method . 52

6

3.2.1 Depth Seeding Network 53
3.2.2 Initial Mask Processing Module 60
3.2.3 Region Refinement Network 60

3.3 Tabletop Object Dataset . 62
3.4 Experiments . 63

3.4.1 Implementation Details 64
3.4.2 Datasets . 65
3.4.3 Metrics . 66
3.4.4 2D Quantitative Results 67
3.4.5 2D Qualitative Results 71
3.4.6 3D Quantitative Results 74
3.4.7 3D Qualitative Results 79
3.4.8 Quantifying Generalization from Sim to Real 82
3.4.9 Application in Grasping Unknown Objects 82

3.5 Discussion . 84

4 RICE: Refining Instance Masks in Cluttered Environments with
Graph Neural Networks 86
4.1 Method . 89

4.1.1 Node Encoder . 89
4.1.2 Building the Sample Tree 90
4.1.3 Sampling Operations 92
4.1.4 Segmentation Graph Scoring Network 95
4.1.5 Training Procedure . 97

4.2 Experiments . 98
4.2.1 Implementation Details 98
4.2.2 Datasets and Metrics 99
4.2.3 Encoding RGB and Modality Tuning 100
4.2.4 SOTA Improvements 100
4.2.5 Ablation Study . 101
4.2.6 Evaluating the Usefulness of Each Sampling Operation103
4.2.7 SGS-Net Ranking . 104
4.2.8 Visualizing Refinements 105

7

4.2.9 Failures and Limitations 105
4.2.10 Guiding a Manipulator with Contour Uncertainties

for Efficient Scene Understanding 106
4.3 Discussion . 108

5 Conclusion 110
5.1 Contributions . 110
5.2 Future Directions . 113

5.2.1 Incorporating Interaction and Self-Supervised Learning113
5.2.2 Better Uncertainty Estimate Representations 113
5.2.3 Generalizing Outside of Tabletop Settings 114
5.2.4 Connecting Actions to Segmentations 115
5.2.5 Lifelong Learning . 115

8

List of Figures

1.1 Pretrained object detectors fail at detecting unseen objects . 19
1.2 Illustration of Sim-to-Real gap 22

2.1 Overview of PT-RNN. RGB images and optical flow are fed
into a recurrent neural network, which computes embeddings
of pixel trajectories. These embeddings are clustered into
different foreground objects. 26

2.2 Overview of PT-RNN architecture. First, feature maps of
each frame are extracted from the Y-Net. Next, foreground
masks are computed, shown in orange. The PT-RNN uses
these foreground masks to compute trajectory embeddings
(example foreground trajectory from frame 1 to T shown
in purple), which are normalized to produce unit vectors.
Backpropagation passes through the blue solid arrows, but
not through the red dashed arrows. 29

2.3 We show U-Net [136] and our proposed Y-Net to visually
demonstrate the difference. Y-Net has two encoding branches
(shown in green) for each input modality, which is fused
(shown in purple) and passed to the decoder (shown in yel-
low). Skip connections are visualized as blue arrows. 30

9

2.4 We illustrate pixel linking in foreground pixel trajectories.
The foreground mask is shown in orange, forward flow is
denoted by the blue dashed arrow, and backward flow is de-
noted by the red dashed arrow. The figure shows a trajectory
that links pixels in frames t− 1, t, t+ 1. Two failure cases that
can cause a trajectory to end are shown between frames t+ 1

and t+ 2: 1) Eq. (2.1) is not satisfied, and 2) one of the pixels
is not classified as foreground. 32

2.5 Qualitative results for motion segmentation. The videos are:
goats01, horses02, and cars10 from FBMS, and forest from Com-
plexBackground. 44

3.1 High level overview of the proposed two-stage framework
of UOIS-Net. The first stage leverages depth only to produce
rough initial masks. The second stage then leverages RGB to
refine the initial masks to produce accurate, sharp instance
masks. 48

3.2 Overall architecture. The Depth Seeding Network (DSN) is
shown in the red box, the Initial Mask Processor (IMP) in the
green box, and the Region Refinement Network (RRN) in the
blue box. The images come from a real example taken by an
RGB-D camera in our lab. Despite the level of noise in the
depth image (due to reflective table surface), our method is
able to produce sharp and accurate instance masks. Gradients
do not flow backwards through dotted lines. 53

3.3 Examples from our Tabletop Object Dataset. (Non-photorealistic)
RGB, depth, and instance masks are shown. 62

10

3.4 Comparison of UOIS-Net-2D with baselines, Mask R-CNN,
and PointGroup on OCID [152]. LCCP and V4R operate
on depth only, thus are subject to noise from depth sensors.
However, this is also true for the ground truth segmentation
produced by OCID [152]. Our proposed UOIS-Net-2D pro-
vides sharp and accurate masks in comparison to all of the
baselines. 71

3.5 Mask refinements with RRN: before (top) refinement (after
IMP), and after refinement (bottom). 72

3.6 Outputs (and intermediate) of UOIS-Net-2D are visualized.
We demonstrate the robustness of the Hough voting layer
and the IMP (top) and show common failure modes (bottom).
See text for details. Best viewed in color on a computer screen. 73

3.7 Ablation study to test the sensitivity of UOIS-Net-3D with
respect to τ, σ. Best viewed by zooming in on a computer. . . 78

3.8 Qualitative comparison of UOIS-Net-2D to UOIS-Net-3D on
OCID. 79

3.9 Effect of `sep on center votes. Rows 2 and 3 show the point
cloud (visualized with Open3D [185]) and center votes over-
laid on the image, which are color-coded according to their
instance ID. Best viewed in color and zoomed in. 80

3.10 Common failure modes of UOIS-Net-3D. See text for details.
Best viewed in color and zoomed in. 81

3.11 Visualization of clearing table using our instance segmenta-
tion and 6-DOF GraspNet [109]. 83

4.1 High-level overview of RICE. Given an initial segmentation,
we encode it as a segmentation graph, sample perturbations,
then score the resulting segmentation graphs. The highest
scoring graph and/or contour uncertainty is output. Best
viewed in color and zoomed in. 87

11

4.2 Given an initial instance segmentation mask (left), our seg-
mentation graph representation encodes each individual mask
as a graph node (red dots) with a corresponding feature vec-
tor vi (yellow bar) output by the Node Encoder (right). Edges
(blue lines) connect nearby masks. 89

4.3 Example of a sample tree. Ground Truth and SGS-Net scores
are shown, along with the chosen sampling operations. In this
example, all leaves improve upon the initial segmentation
graph, with the highest ranking graph also being the closest
to the ground truth segmentation. Very similar splits and
adds are investigated in the leaf trajectories. 92

4.4 We show real-world examples of the sampling operations and
how they can refine the original segmentation. Best viewed
in color on a computer screen and zoomed in. 93

4.5 A high-level illustration of our Segmentation Graph Scoring
Network (SGS-Net). It is composed of a Node Encoder (see
Figure 4.2), multiple Residual GraphNet Layers, and an out-
put layer. We borrowed elements from Figure 3 of Battaglia
et al. [10]. 96

4.6 Modality tuning on OCID [152] and OSD [135] shows that
tuning up to conv2_1 when training on simulated data gener-
alizes best to real data. Note that standard deviation bars are
shown, but are very tight and difficult to see. 100

4.7 Applying RICE to refine results from state-of-the-art instance
segmentation methods leads to improved performance across
the board. Note that standard deviation bars are shown, but
are very tight and difficult to see. 101

4.8 Can you spot the differences between the segmentations? . . 104
4.9 We demonstrate successful refinements (left, green box) for

each of the sampling operations. Failure modes (right, red
box) include textured objects and non-neighboring masks that
belong to the same object. Best viewed in color and zoomed
in on a computer screen. 106

12

4.10 UCN masks [173] and contour uncertainties from RICE in a
trial of our scene understanding experiment. Uncertainties
are shown in red with average contours in green. After grasp-
ing the milk carton and red cup, the scene is segmented with
full certainty, indicating that the scene is fully understood.
Thus, the algorithm terminates without having to singulate
each object. Best viewed in color and zoomed in. 108

13

List of Tables

2.1 PT-RNN variants. For standard, we show the equations for
pixel (i, j), while for the others we show equations in terms
of the entire H × W × C feature map. Note that for stan-
dard, Wc ∈ R1×2C ,Ww ∈ R1×C , while for conv and convGRU,
Wc,Ww,Wz,Wr,Wĉ are 3× 3 convolution kernels. ∗ denotes
convolution and σ is the sigmoid nonlinearity. 34

2.2 Fusion ablation. Performance is measured in IoU. 40
2.3 Architecture and Dataset ablation on FBMS testset. 41
2.4 Results for FBMS, ComplexBackground (CB), CamouflagedAn-

imal (CA), and averaged over all videos in these datasets
(ALL). Best results are highlighted in red with second best in
blue. 42

2.5 Results on Video Foreground Segmentation for DAVIS2016
and FT3D. Best results are highlighted in red. 43

3.1 Comparison with baselines on ARID20 and YCB10 subsets of
OCID [152]. Red indicates the best performance. 67

3.2 Evaluation of our methods against SOTA methods trained on
different input modes. Red indicates the best performance. . 68

3.3 Performance of UOIS-Net without RRN. 69
3.4 Comparison of RRN when training on TOD and real images

from Google OID [12]. 70

14

3.5 (left) Ablation experiments for UOIS-Net-2D on OSD [135].
O/C denotes the Open/Close morphological transform, while
CCC denotes Closest Connected Component. (right) Refining
Mask R-CNN results with RRN (trained on TOD) on OSD. . 70

3.6 Ablation study over loss functions of UOIS-Net-3D. Our
novel separation loss `sep is crucial to obtaining state-of-the-
art performance. Note that we are using an RRN trained on
real data. 76

3.7 Ablation study to test the significance of a wider receptive
field. Using the ESP module [106] in the DSN architecture
improves performance for both UOIS-Net-2D and UOIS-Net-
3D. Note that we are using an RRN trained on real data. . . 77

3.8 Performance on TOD test set (20k images). 82

4.1 Ablation to test the utility of SO-Nets and SGS-Net on OCID [152]
starting from UOIS-Net-3D [178] masks. Only using the sam-
ple operator networks (SO-Nets) in an iterative sampling
scheme already provides an increase in performance, show-
ing that the smart samples are generally improving the initial
segmentations. However, the standard deviations (shown in
parentheses) are relatively high. Adding in SGS-Net boosts
performance while drastically lowering the variance, demon-
strating the efficacy of SGS-Net in consistently filtering out
bad suggestions by the SO-Nets. 102

4.2 Sampling Operation Ablation. We omit standard deviations
as they are all less than 0.0005. We show results on F@.75 and
Fn@.75. In parentheses, we show relative gain compared to
the full RICE method (with all sampling operations). 103

4.3 Ranking study on OCID and OSD. 104

15

Chapter 1

Introduction

A future where robots are ubiquitously deployed around the world is not too
far off. The International Federation of Robotics World Robotics Report in
2020 reports that a record high of 2.7 million robots are currently operating
in factories around the world. In the United States alone, industrial robots
grew fourfold between 1993 and 2007 [1]. This concept was predicted as far
back as 1930, when John Maynard Keynes famously predicted that the rapid
spread of technology will result in “technological unemployment” [80].

Robots have been flourishing in factory environments. The automotive
industry employs 38% of existing robots, followed by the electronics in-
dustry (15%), plastics and chemicals (10%), and metal products (7%) [1].
These environments are typically very well structured, where objects to be
manipulated (e.g. product parts such as a car door for a car assembly robot)
are exactly where they are expected to be.

Robot automation in homes and offices can provide a number of advan-
tages for the world. They can significantly ease the burden of performing
mundane tasks such as making coffee, or cleaning rooms. They can pro-
vide safety by largely reducing human error in driving by replacing human
drivers with autonomous vehicles. Robots can additionally be beneficial in
caring for the elderly, and providing services at hospitals such as transport-
ing medications from floor to floor or providing surgeons with enhanced
control and vision, such as Intuitive Surgical’s da Vinci robot. This then begs

16

the question: why aren’t we seeing more robots operating in unstructured spaces
such as homes and/or offices?

Let’s consider a task in a home such as cleaning up a room full of toys
(putting them back where they belong). What skills does a robot need
in order to successfully perform this task? One may correctly identify
that manipulation skills are required to solve this task. While this is true,
the precursor to manipulation involves perceiving and reasoning spatially
about the objects of interest (toys on the floor). We argue that the basic
robot perception technologies that are required to perform this task are still
lacking.

A natural thought is to apply solutions researched in the computer vision
domain for this problem. While computer vision originally was meant to
be a stepping stone to endow robots with visual capabilities, the current
research questions they focus on today typically do not address the specific
problems that arise when attempting to deploy robots in unstructured en-
vironments [154]. One such problem is the recognition of unseen objects.
Most object detection algorithms in the computer vision domain tend to
focus on detecting objects of known classes (e.g. pedestrians, cars, and
bikers). However, in the above example task of cleaning a room full of toys,
it is likely that the robot may run into types of toys it has never encountered
before, either in a training phase or a previous interaction. A failure to recog-
nize the toy can lead to it being left on the floor, which could be a potential
danger when kids are running around the room. In fact, it is inevitable
that robots will encounter unseen objects as they continue to be deployed
in unstructured environments. Thus, robots will need perceptual systems
that can safely reason about such objects in order to facilitate environmental
interactions in unstructured spaces such as homes and offices. We focus our
work onto this specific problem, which is to say that we attempt to answer
the question: “How can we imbue robots with perception systems that
can reason about unseen objects?”

This thesis starts off by laying out the challenges that emerge when
building systems that can perceive and reason about unseen objects. First,
we further detail current computer vision technologies and why they cannot

17

be directly applied. We then discuss how we can leverage the ever growing
amount of repositories of 3D data to generate datasets of which we can use to
learn our algorithms. It will then develop potential solutions to this problem
by exploiting different visual cues and clever designs to take advantage of
synthetic data.

1.1 Computer Vision vs. Robot Vision in Today’s World

In the 1960s, computer vision was originally meant to be a stepping stone
to endow robots with visual competence [156]. Marvin Minsky famously
asked his undergraduate student Gerald Sussman to “spend the summer
linking a camera to a computer and getting the computer to describe what
it saw”. However, the problem was infinitely harder than imagined and has
been the center of much research effort to this day.

Current computer vision research touches upon many subfields includ-
ing object detection, tracking, and 3D reconstruction. The research questions
typically addressed in these areas are mainly concerned with “in-the-wild”
images, a term that encapsulates the distribution of images found on the in-
ternet. For example, social networking sites such as Facebook or Instagram
possess large amounts of photos captured by humans, and it is very much of
interest to be able to detect people in order to build interesting products that
better serve their customers (e.g. automated tagging of individuals). Thus a
desirable quality of an object detection algorithm is to be able to adequately
perform in such “in-the-wild” settings.

Because “in-the-wild” images are typically captured by humans, there is
a bias to certain object categories that are frequently present in such images
such as other humans, or pets such as dogs. To build computer vision
systems that perform reliably in such settings, large amounts of “in-the-
wild” training data is collected and labeled by humans. This leads to further
bias as the classes chosen for manual labeling are typically a small subset
of the objects present in the images. These labels include objects that are of
interest to humans, e.g. other humans, animals, and vehicles such as cars or
trucks. In fact, many of the large-scale datasets that are used for evaluation

18

Figure 1.1: Applying a state-of-the-art pretrained object detector (Mask R-
CNN [63]) to an image with objects not belonging to a pre-defined set of
categories results in missed detections. The objects on the table are of interest
for the robot to manipulate, yet the lego block, R2D2 can, and the tupperware
are among many objects that are not detected. This demonstrates the clear
need to develop solutions to recognize such unseen objects.

such as ImageNet (image recognition) [43] and COCO (object detection) [99]
report results on a finite number of categories to detect. This leads a lot of
computer vision research to focus only on these categories, and popular
methods for solving these problems (e.g. Mask RCNN [133, 63]) tend to
contain specific solutions for dealing with finite categories. Objects that
do not belong to this pre-defined set of categories are typically ignored as
shown in Figure 1.1. Neglecting the ignored categories is generally fine in
many computer vision applications such as image tagging or image content
manipulation (think automatic Adobe photoshop).

19

Robot vision, on the other hand, tends to come across a different set of
challenges that are not typically addressed by the computer vision commu-
nity [154], especially when compared to the “in-the-wild” settings. Robots
do not just perceive their surroundings, but also take actions to either move
through the environment or induce changes to it through manipulation.
Thus, visual perception is only one part of the complex, embodied system
that robots encompass [154]. This leads to problems including visual naviga-
tion [18], simultaneous localization and mapping (SLAM), and (inter)active
perception [17], each of which has its own research communities.

In unstructured, ever-changing environments, robots will inevitably
encounter instances of object classes that were not seen in a training phase
nor via a previous interaction. For example, imagine a robot navigating
through a home. During its navigation trajectory, it may roam through
rooms full of toys, underneath tables, and potentially through hard-to-reach
places. In each of these locations it may observe objects such as scattered
toys, outlets, and objects lost for long periods of time (e.g. that TV remote
you couldn’t find for years) that do not register as objects from a known
set of classes (e.g. prior information distilled form a dataset). Such “open-
set” conditions [11, 140], where objects of unknown class are regularly
encountered, should be expected as robots are deployed in these variable
environments.

Because the ultimate goal of robot perception is to inform a choice of
action in a real-world environment, it is important that unseen objects are
detected and recognized, not just objects of known classes. If robots operate
as if these objects are not present, unfortunate consequences can occur. Toys
may be left unattended which can be dangerous for kids running around, or
a manipulation trajectory may collide with the ignored objects. Even worse,
self-driving cars can crash into rare or unusual-looking animals/objects that
are not identified as any instance of a pre-defined set of object classes.

Additionally, some notion of uncertainty in these detections would also
serve useful in a robot selecting its actions. Uncertainty can be used in
fusing information together over time (e.g. Kalman filters [75]), or allow a
framework such as active learning [143] or information gain [149] to select

20

actions that minimize the uncertainty. Thus, the question of how to obtain
uncertainty estimates of unseen objects and resolve these uncertainties
through interaction is an important problem to consider in getting a fully
autonomous robot to function in unstructured environments.

1.2 Leveraging Large-Scale Data without Manual An-
notation

The recent boom in deep learning [88] has demonstrated that training deep
networks with large amounts of data can lead to very accurate prediction
models. Deep networks now dominate the majority of computer vision sub-
tasks including image recognition [88], object detection/segmentation [63,
28], and 3D reconstruction [107]. We build off of such advances and also
learn deep networks in order to solve our problem of detecting and seg-
menting unseen objects.

In order to ensure the generalization capability of a deep network to
recognize unseen objects, we need to learn from data that contains large
amounts of various objects in the environments of interest (e.g. tabletop
environments). However, large-scale datasets with this property currently
do not exist. We could follow the paradigm of computer vision research
and collect a large real-world dataset with manual annotations such as
ImageNet [43] and COCO [99]. Unfortunately, this requires a substantial
amount of time and money in order to collect the images and pay humans
to annotate the collected images. Additionally, robots are intended to en-
counter many different environments (e.g. homes, offices, disaster recovery,
just to name a few) which would require separately collected large-scale
real-world datasets for each of them. Clearly, this approach will not scale
with the amount of environments robots encounter.

Thus, it is appealing to utilize synthetic data for training, such as using
the ShapeNet repository which contains thousands of 3D objects [24]. While
collecting 3D models for ShapeNet took a lot of effort, using it to generate
a large-scale synthetic dataset allows us to sidestep the image collection

21

Figure 1.2: Mask R-CNN [63] trained on a synthetic dataset of tabletop
objects (introduced in Chapter 3) evaluated on a real-world image (left) of
tabletop objects [152]. The detections not only miss the single object of inter-
est (keyboard), but they also misfire on table textures. This demonstrates
the “Sim-to-Real” gap. The ground truth segmentation masks (right) show
only one object of interest on the table, a keyboard.

and manual annotation steps, which reduces the time and cost to next to
nothing. We obtain detection and segmentation annotations for free, which
are expensive to label with humans. Additionally, we have full control over
the object poses, which affords us more control than over the traditional
image collection process in “in-the-wild” settings. However, there exists a
domain gap between synthetic data and real-world data as many simulators
do not provide realistic-looking images. Training directly on such synthetic
data only usually does not work well in the real world [183]. In Figure 1.2,
we trained Mask R-CNN on a synthetic dataset of tabletop objects (intro-
duced in Chapter 3) and evaluated it on a real-world tabletop image where
it fails to detect the single object on the table. Additionally, synthesizing
photo-realistic images with physics-based rendering can be computationally
expensive [64], making large photorealistic synthetic datasets impractical to
obtain.

Consequently, recent efforts in robot perception have been devoted to
the problem of Sim-to-Real, where the goal is to transfer capabilities learned
in simulation to real-world settings. For instance, some works have used
domain adaptation techniques to bridge the gap when unlabeled real data is

22

available [163, 19]. Domain randomization [159] was proposed to diversify
the rendering of synthetic data for training. While these techniques attempt
to fix the discrepancy between synthetic and real-world RGB, models trained
with synthetic depth have been shown to generalize reasonably well for
simple settings such as bin-picking [103, 37]. However, in more complex
settings, noisy depth sensors can limit the application of such methods.

The above solutions can be described as augmenting the training process
of deep networks to handle the irregularities of synthetic data with respect
to real-world data (i.e. in order to handle the sim-to-real gap). Domain
randomization assumes control over the data generation during training,
and domain adaptation introduces extra network architectural components
along with real-world data to the training pipeline. Instead, an interesting
question to explore is whether we can leverage standard training pipelines of
deep networks (e.g. stochastic gradient descent with standard loss functions
such as binary cross entropy) while designing the network structure to better
handle synthetic data. This would allow for a more transparent approach:
simply choose the network architecture design and train it with standard
loss functions and only the synthetic data. The requirements of control over
the data generation or access to real-world data would be relieved. We
pose this question here as an interesting thought that serves as additional
motivation for the work in this thesis.

1.3 Dissertation Overview

This dissertation explores multiple directions of research of solutions to the
problem of detecting and segmenting unseen objects for robot perception.
In particular, we explore methods that rely heavily on the nuances of robot
environments and/or large-scale synthetic data.

We begin with Chapter 2, where we investigate the use of motion cues
extracted from video as the primary source of information. We formulate
the problem as foreground motion clustering, where the goal is to cluster
foreground pixels in videos into different objects. We propose a network
architecture, PT-RNN, that is able to segment the objects consistently in time

23

by design, and demonstrate its ability to discover novel unseen objects from
videos. We leverage a large-scale synthetic dataset of flying chairs in order
to pre-train PT-RNN.

We then introduce UOIS-Net in Chapter 3, a solution that utilizes geom-
etry cues from a single image to segment unseen object instances. UOIS-Net
is designed to leverage the strengths of depth and RGB separately in order to
perform the segmentation. This two-stage network extracts initial instance
segmentation masks from depth alone which generalizes quite well from
synthetic to real-world settings, and then utilizes RGB to sharpen the initial
masks. The clever design of UOIS-Net allows for it to be trained purely on
a non-photorealistic synthetic dataset that we generated, yet generalize to
the real-world quite well without any fine-tuning. This work has enabled
further downstream robotics tasks of unseen objects such as grasping and
re-arrangement.

In Chapter 4, we propose RICE, a method for refining a set of input
instance segmentation masks by utilizing a relational neural network archi-
tecture. We introduce a new graph-based representation of instance segmen-
tation masks. RICE uses this representation to sample perturbations to the
original set of masks, and uses a graph neural network to evaluate whether
the perturbations are better. We show improved results when combined
with previous works that directly predict instance masks. Additionally, we
show that RICE can generate uncertainty at the instance segmentation level
and use it to demonstrate an efficient scene understanding application.

Finally, we conclude this thesis with a conclusion and discussion of
future directions of this research in Chapter 5.

24

Chapter 2

Object Discovery in Videos as
Foreground Motion Clustering
This chapter discusses work originally published in Xie et al. [174].

Discovering objects from videos is an important capability that an intelligent
system needs to have. Imagine deploying a robot to a new environment. If
the robot can discover and recognize unseen objects in the environment by
observing, it would enable the robot to better understand its work space. In
the interactive perception setting [17], the robot can even interact with the
environment to discover objects by touching or pushing objects. To define
an “object”, in this chapter we consider an entity that can move or be moved
to be an object, which includes various rigid, deformable and articulated
objects. We utilize motion and appearance cues to discover objects in videos.

Motion-based video understanding has been studied in computer vision
for decades. In low-level vision, different methods have been proposed to
find correspondences between pixels across video frames, which is known
as optical flow estimation [65, 8]. Both camera motion and object motion
can result in optical flow. Since the correspondences are estimated at a pixel
level, these methods are not aware of the objects in the scene, in the sense
that they do not know which pixels belong to which objects. In high-level
vision, object detection and object tracking in videos has been well-studied
[5, 74, 61, 184, 13, 171]. These methods train models for specific object

25

Flow

Pixel	Trajectory
Recurrent	Neural	Network

Trajectory	
Embeddings

Discovered	Objects

RGB

Figure 2.1: Overview of PT-RNN. RGB images and optical flow are fed into a
recurrent neural network, which computes embeddings of pixel trajectories.
These embeddings are clustered into different foreground objects.

categories using annotated data. As a result, they are not able to detect nor
track unseen objects that have not been seen in the training data. In other
words, these methods cannot discover new objects from videos. In contrast,
motion segmentation methods [20, 78, 14, 118] aim at segmenting moving
objects in videos, which can be utilized to discover unseen objects based on
their motion.

In this chapter, we formulate the unseen object instance segmentation
problem as foreground motion clustering, where the goal is to cluster pixels
in a video into different objects based on their motion. There are two main
challenges in tackling this problem. First, how can foreground objects be
differentiated from background? Based on the assumption that moving
foreground objects have different motion as the background, we design a
novel encoder-decoder network that takes video frames and optical flow as
inputs and learns a feature embedding for each pixel, where these feature
embeddings are used in the network to classify pixels into foreground or
background. Compared to traditional foreground/background segmenta-
tion methods [33, 68], our network automatically learns a powerful feature
representation that combines appearance and motion cues from images.

Secondly, how can we consistently segment foreground objects across

26

video frames? We would like to segment individual objects in each video
frame and establish correspondences of the same object across video frames.
Inspired by [20] that clusters pixel trajectories across video frames for object
segmentation, we propose to learn feature embeddings of pixel trajectories
with a novel Recurrent Neural Network (RNN), and then cluster these pixel
trajectories with the learned feature embeddings. Since the pixel trajectories
are linked in time, our method automatically establishes the object corre-
spondences across video frames by clustering the trajectories. Different
from [20] that employs hand-crafted features to cluster pixel trajectories,
our method automatically learns a feature representation of the trajectories,
where the RNN controls how to combine pixel features along a trajectory to
obtain the trajectory features. Figure 2.1 illustrates our framework for object
motion clustering.

Since our problem formulation aims to discover objects based on mo-
tion, we conduct experiments on five motion segmentation datasets to
evaluate our method: Flying Things 3D [105], DAVIS [120, 125], Freiburg-
Berkeley motion segmentation [115], ComplexBackground [111] and Cam-
ouflagedAnimal [15]. We show that our method is able to segment poten-
tially unseen foreground objects in the test videos and consistently across
video frames. Comparison with the state-of-the-art motion segmentation
methods demonstrates the effectiveness of our learned trajectory embed-
dings for object discovery. In summary, this chapter has the following key
contributions:

• We introduce a novel encoder-decoder network to learn feature em-
beddings of pixels in videos that combines appearance and motion
cues.

• We introduce a novel recurrent neural network to learn feature em-
beddings of pixel trajectories in videos.

• We use foreground masks as an attention mechanism to focus on
clustering of relevant pixel trajectories for object discovery.

• We achieve state-of-the-art performance on commonly used motion

27

segmentation datasets.

2.1 Related Work

Video Foreground Segmentation. Video foreground segmentation is the
task of classifying every pixel in a video as foreground or background.
This has been well-studied in the context of video object segmentation
[15, 116, 161, 161, 70], especially with the introduction of unsupervised
challenge of the DAVIS dataset [120]. [15] uses a probabilistic model that
acts upon optical flow to estimate moving objects. [116] predicts video
foreground by iteratively refining motion boundaries while encouraging
spatio-temporal smoothness. [161, 160, 70] adopt a learning-based approach
and train Convolutional Neural Networks (CNN) that utilize RGB and
optical flow as inputs to produce foreground segmentations. Our approach
builds on these ideas and uses the foreground segmentation as an attention
mechanism for pixel trajectory clustering.
Instance Segmentation. Instance segmentation algorithms segment individ-
ual object instances in images. Many instance segmentation approaches have
adopted the general idea of combining segmentation with object proposals
[63, 123]. While these approaches only work for objects that have been seen
in a training set, we make no such assumption as our intent is to discover
objects. Recently, a few works have investigated the instance segmentation
problem as a pixel-wise labeling problem by learning pixel embeddings
[42, 114, 85, 49]. [114] predicts pixel-wise features using translation-variant
semi-convolutional operators. [49] learns pixel embeddings with seediness
scores that are used to compose instance masks. [42] designs a contrastive
loss and [85] unrolls mean shift clustering as a neural network to learn pixel
embeddings. We leverage these ideas to design our approach of learning
embeddings of pixel trajectories.
Motion Segmentation. Pixel trajectories for motion analysis were first intro-
duced by [153]. [20] used them in a spectral clustering method to produce
motion segments. [115] provided a variational minimization to produce
pixel-wise motion segmentations from trajectories. Other works that build

28

�(,) �(,) �(,)

Feature	
Maps

PT-RNN

FG	Masks

Trajectory
Embedding

Y-Net

t1 TFrame	#

. . .

. . .

. . .

. . .

.
Figure 2.2: Overview of PT-RNN architecture. First, feature maps of each
frame are extracted from the Y-Net. Next, foreground masks are computed,
shown in orange. The PT-RNN uses these foreground masks to compute
trajectory embeddings (example foreground trajectory from frame 1 to T
shown in purple), which are normalized to produce unit vectors. Backpropa-
gation passes through the blue solid arrows, but not through the red dashed
arrows.

off this idea include formulating trajectory clustering as a multi-cut problem
[77, 78, 79] or as a density peaks clustering [166], and detecting disconti-
nuities in the trajectory spectral embedding [53]. More recent approaches
include using occlusion relations to produce layered segmentations [157],
combining piecewise rigid motions with pre-trained CNNs to merge the
rigid motions into objects [16], and jointly estimating scene flow and motion
segmentations [144]. We use pixel trajectories in a recurrent neural network
to learn trajectory embeddings for motion clustering.

2.2 Method

Our approach takes video frames and optical flow between pairs of frames
as inputs, which are fed through an encoder-decoder network, resulting in

29

(a) U-Net architecture (b) Y-Net architecture

Figure 2.3: We show U-Net [136] and our proposed Y-Net to visually demon-
strate the difference. Y-Net has two encoding branches (shown in green) for
each input modality, which is fused (shown in purple) and passed to the
decoder (shown in yellow). Skip connections are visualized as blue arrows.

pixel-wise features. These features are used to predict foreground masks
of moving objects. In addition, a recurrent neural network is designed to
learn feature embeddings of pixel trajectories inside the foreground masks.
Lastly, the trajectory embeddings are clustered into different objects, giving
a consistent segmentation mask for each discovered object. The network
architecture is visualized in Figure 2.2.

2.2.1 Encoder-Decoder: Y-Net

Let It ∈ RH×W×3, Ft ∈ RH×W×2 be an RGB image and forward optical
flow image at time t, respectively. Our network receives these images
from a video as inputs and feeds them into an encoder-decoder network
separately at each time step, where the encoder-decoder network extracts
dense features for each video frame. Our encoder-decoder network is an
extension of the U-Net architecture [136] (Figure 2.3a) to two different input
types, i.e., RGB images and optical flow images, by adding an extra input
branch. We denote this mid-level fusion of low-resolution features as Y-Net.
We illustrate the Y-Net architecture in Figure 2.3b.

In detail, our network has two parallel encoder branches for the RGB

30

and optical flow inputs. Each encoder branch consists of four blocks of two
3× 3 convolutions (each of which is succeeded by a GroupNorm layer [169]
and ReLU activation) followed by a 2× 2 max pooling layer. The encodings
of the RGB and optical flow branches are then concatenated and input to a
decoder network, which consists of a similar architecture to [136] with skip
connections from both encoder branches to the decoder.

We argue that this mid-level fusion performs better than early fusion
and late fusion (using completely separate branches for RGB and optical
flow, similar to two-stream networks [148, 50, 160]) of encoder-decoder
networks while utilizing less parameters, and show this empirically in
Section 2.3.1. The output of Y-Net, φ(It, Ft) ∈ RH×W×C , is a pixel-dense
feature representation of the scene. We will refer to this as pixel embeddings
of the video.

2.2.2 Foreground Prediction

The Y-Net extracts a dense feature map for each video frame that combines
appearance and motion information of the objects. Using these features, our
network predicts a foreground mask for each video frame by simply apply-
ing another convolution on top of the Y-Net outputs to compute foreground
logits. These logits are passed through a sigmoid layer and thresholded at
0.5. For the rest of the paper, we will denote mt to be the binary foreground
mask at time t.

The foreground masks are used as an attention mechanism to focus on
the clustering of the trajectory embeddings. This results in more stable
performance, as seen in Section 2.3.1. Note that while we focus on moving
objects in our work, the foreground can be specified depending on the
problem. For example, if we specify that certain objects such as cars should
be foreground, then we would learn a network that learns to discover and
segment car instances in videos.

31

t � 1 t t + 1 t + 2

Ft�1 Ft

F̂t F̂t+1

Figure 2.4: We illustrate pixel linking in foreground pixel trajectories. The
foreground mask is shown in orange, forward flow is denoted by the blue
dashed arrow, and backward flow is denoted by the red dashed arrow. The
figure shows a trajectory that links pixels in frames t− 1, t, t+ 1. Two failure
cases that can cause a trajectory to end are shown between frames t+ 1 and
t+ 2: 1) Eq. (2.1) is not satisfied, and 2) one of the pixels is not classified as
foreground.

2.2.3 Trajectory Embeddings

In order to consistently discover and segment objects across video frames,
we propose to learn deep representations of foreground pixel trajectories of
the video. Specifically, we consider dense pixel trajectories throughout the
videos, where trajectories are defined as in [153, 20]. Given the outputs of
Y-Net, we compute the trajectory embedding as a weighted sum of the pixel
embeddings along the trajectory.

Linking Foreground Trajectories

We first describe the method to calculate pixel trajectories according to [153].
Denote Ft−1 ∈ RH×W×2 to be the forward optical flow field at time t−1 and
F̂t ∈ RH×W×2 to be the backward optical flow field at time t. As defined in
[153], we say the optical flow for two pixels (i, j) at time t− 1 and (i′, j′) at

32

time t is consistent if∥∥∥F i,jt−1 + F̂ i
′,j′

t

∥∥∥2
≤ 0.01

(∥∥∥F i,jt−1

∥∥∥2
+
∥∥∥F̂ i′,j′t

∥∥∥2
)

+ 0.5, (2.1)

where F i,jt−1 denotes the i, j-th element of Ft−1. Essentially, this condition
requires that the backward flow points in the inverse direction of the forward
flow, up to a tolerance interval that is linear in the magnitude of the flow.
Pixels (i, j) and (i′, j′) are linked in a pixel trajectory if Eq. (2.1) holds.

To define foreground pixel trajectories, we augment the above definition
and say pixels (i, j) and (i′, j′) are linked if Eq. (2.1) holds and both pixels
are classified as foreground. Using this, we define a foreground-consistent
warping function g : RH×W → RH×W that warps a set of pixels v ∈ RH×W

forward in time along their foreground trajectories:

g(v)i
′,j′ =

{
vi,j if (i, j), (i′, j′) linked
0 otherwise.

This can be achieved by warping v with F̂t with bilinear interpolation and
multiplying by a binary consistency mask. This mask can be obtained by
warping the foreground mask mt−1 with F̂t using Eq. (2.1) and intersecting
it withmt, resulting in a mask that is 1 if (i′, j′) is linked to a foreground pixel
at time t− 1. Figure 2.4 demonstrates the linking of pixels in a foreground
pixel trajectory.

Pixel Trajectory RNN

After linking foreground pixels into trajectories, we describe our proposed
Recurrent Neural Network (RNN) to learn feature embedings of these trajec-
tories. Denote {(it, jt)}Lt=1 to be the pixel locations of a foreground trajectory,
{xit,jtt ∈ RC}Lt=1 to be the pixel embeddings of the foreground trajectory
(Y-Net outputs, i.e. xt = φ(It, Ft)), and L as the length of the trajectory. We
define the foreground trajectory embeddings to be a weighted sum of the

33

standard conv convGRU

ci,jt = ReLU
(
Wc

[
h̃i,jt−1

W̃i,j
t−1

xi,jt

])
ct = ReLU

(
Wc ∗

[
h̃t−1

W̃t−1
xt

])
zt = σ

(
Wz ∗

[
h̃t−1

W̃t−1
xt

])
wi,j
t = σ

(
Wwc

i,j
t

)
wt = σ (Ww ∗ ct) rt = σ

(
Wr ∗

[
h̃t−1

W̃t−1
xt

])
ĉt = ReLU

(
Wĉ ∗

[
rt � h̃t−1

W̃t−1
xt

])
ct = (1− zt)� c̃t−1 + zt � ĉt

wt = σ (Ww ∗ ct)
ht = h̃t−1 + wt � xt
Wt = W̃t−1 + wt

Table 2.1: PT-RNN variants. For standard, we show the equations for pixel
(i, j), while for the others we show equations in terms of the entireH×W×C
feature map. Note that for standard, Wc ∈ R1×2C ,Ww ∈ R1×C , while for conv
and convGRU, Wc,Ww,Wz,Wr,Wĉ are 3× 3 convolution kernels. ∗ denotes
convolution and σ is the sigmoid nonlinearity.

pixel embeddings along the foreground trajectory. Specifically, we have

ψ
(
{xit,jtt }Lt=1

)
=

∑L
t=1 w

it,jt
t � xit,jtt∑L

t=1 w
it,jt
t

, (2.2)

where � denotes element-wise multiplication, the division sign denotes
element-wise division, and wit,jt

t ∈ [0, 1]C .
To compute the trajectory embeddings, we encode ψ(·) as a novel RNN

architecture which we denote Pixel Trajectory RNN (PT-RNN). In its hidden
state, PT-RNN stores{

hit,jtt :=
t∑

τ=1

wiτ ,jτ
τ � xiτ ,jττ ,Wit,jt

t :=
t∑

τ=1

wiτ ,jτ
τ

}
, (2.3)

which allows it to keep track of the running sum and total weight through-
out the foreground trajectory. While Eq. (2.3) describes the hidden state
at each pixel location and time step, we can efficiently implement the PT-
RNN for all pixels by doing the following: at time step t, PT-RNN first
applies the foreground consistent warping function to compute h̃t−1 :=

g (ht−1) ,W̃t−1 = g (Wt−1). Next, we compute wt. We design three variants
of PT-RNN to compute wt, named standard (based on simple RNNs), conv
(based on convRNNs), and convGRU (based on [7]), shown in detail in Table

34

2.1. For standard, we show the equations for a single pixel trajectory. It com-
putes weights based on the pixel embeddings along that trajectory without
knowledge of any other trajectories. For conv, it uses a 3 × 3 convolution
kernel instead of the standard matrix multiply to include information from
neighboring trajectories. Lastly, for convGRU, we design this architecture
based on the convGRU architecture [7] which has an explicit memory state
to capture longer-term dependencies. For all three variants, the hidden state
is {ht,Wt}. However, in the RNN we propagate h̃t

W̃t
, which is the interme-

diate weighted sum at time t. This allows the network to use knowledge of
the previous weights and pixel embeddings to calculate wt+1.

When a trajectory is finished, i.e., pixel (i, j) does not link to any pixel in
the next frame, PT-RNN outputs hi,jt /W

i,j
t , which is equivalent to Eq. (2.2).

This results in a C-dimensional embedding for every foreground pixel
trajectory, regardless of its length, when it starts, or when it ends. Note
that these trajectory embeddings are pixel-dense, removing the need for a
variational minimization step [115]. The embeddings are normalized so that
they lie on the unit sphere.

A benefit to labeling the trajectories is that we are enforcing consistency
in time, since consistent forward and backward optical flow usually means
that the pixels are truely linked [153]. However, issues can arise around the
motion and object boundaries, which can lead to trajectories erroneously
drifting and representing motion of two different objects or an object and
background [153]. In this case, the foreground masks are beneficial and
able to sever the trajectory before it drifts. We also note the similarity to the
DA-RNN architecture [170] that uses data association in a RNN for semantic
labeling.

Spatial Coordinate Module

The foreground trajectory embeddings incorporate information from the
RGB and optical flow images. However, they do not encode information
about the location of the trajectory in the image. Thus, we introduce a
spatial coordinate module which computes location information for each
foreground trajectory. Specifically, we compute a 4-dimensional vector

35

consisting of the average x, y pixel location and displacement for each tra-
jectory and pass it through two fully connected (FC) layers to inflate it to
a C-dimensional vector, which we add to the output of ψ(·) (before the
normalization of the foreground trajectory embeddings).

2.2.4 Loss Function

To train our proposed network, we use a loss function that is comprised of
three terms

L = λfg`fg + λintra`intra + λinter`inter ,

where we set λfg = λintra = λinter = 1 in our experiments. `fg is a pixel-wise
binary cross-entropy loss that is commonly used in foreground prediction.
We apply this on the predicted foreground logits. `intra and `inter operate
on the foreground trajectory embeddings. Inspired by [42], its goal is to en-
courage trajectory embeddings of the same object to be close while pushing
trajectories that are different objects apart. For simplicity of notation, let us
overload notation and define

{
xki
}
, k = 1, . . . ,K, i = 1, . . . , Nk to be a list

of trajectory embeddings of dimension C where k indexes the object and i
indexes the embedding. Since all the feature embeddings are normalized to
have unit length, we use the cosine distance function d(x,y) = 1

2 (1− xᵀy)

to measure the distance between two feature embeddings x and y.

Proposition 1. Let {yi}Ni=1 be a set of unit vectors such that
∑n

i=1 yi 6= 0. Define
the spherical mean of this set of unit vectors to be the unit vector that minimizes
the cosine distance

µ := argmin
‖w‖2=1

1

n

n∑
i=1

d (w,yi) (2.4)

Then µ =
∑n

1=1 yi

‖∑n
1=1 yi‖ .

36

Proof. We note the the following:

argmin
‖w‖2=1

1

n

n∑
i=1

d(w,yi) = argmin
‖w‖2=1

1

2n

n∑
i=1

(1−wᵀyi)

= argmin
‖w‖2=1

[
1− 1

n

n∑
i=1

wᵀyi

]

= argmax
‖w‖2=1

n∑
i=1

wᵀyi

= argmax
‖w‖2=1

wᵀ
n∑
i=1

yi

Note that the unit vector that maximizes the inner product with a given
vector v is simply the normalized version of v (if v 6= 0). Thus, the solution
to the above problem is

∑n
i=1 yi

‖∑n
i=1 yi‖2

.

The goal of the intra-object loss `intra is to encourage these learned tra-
jectory embeddings of an object to be close to their spherical mean. This
results in

`intra =
1

K

K∑
k=1

Nk∑
i=1

1
{
d(µk,x

k
i)− α ≥ 0

}
d2(µk,x

k
i)∑Nk

i=1 1
{
d(µk,x

k
i)− α ≥ 0

} ,

where µk is the spherical mean of trajectories
{
xki
}Nk
i=1

for object k, and 1

denotes the indicator function. Note that µk is a function of the embeddings.
The indicator function acts as a hard negative mining that focuses the loss
on embeddings that are further than margin α from the spherical mean. In
practice, we do not let the denominator get too small as it could result in
unstable gradients, so we allow it to reach a minimum of 50.

Lastly, the inter-object loss `inter is designed to push trajectories of differ-
ent objects apart. We desire the clusters to be pushed apart by some margin
δ, giving

`inter =
2

K(K − 1)

∑
k<k′

[δ − d(µk, µk′)]
2
+ ,

37

where [x]+ = max(x, 0). This loss function encourages the spherical means
of different objects to be at least δ away from each other. Since our em-
beddings lie on the unit sphere and our distance function measures cosine
distance, δ does not need to depend on the feature dimension C. In our
experiments, we set δ = 0.5 which encourages the clusters to be at least 90
degrees apart.

2.2.5 Trajectory Clustering

At inference time, we cluster the foreground trajectory embeddings with
the von Mises-Fisher mean shift (vMF-MS) algorithm [84]. This gives us the
clusters as well as the number of clusters, which is the estimated number of
objects in a video. vMF-MS finds the modes of the kernel density estimate
using the von Mises-Fisher distribution. The density can be described as
p(y;m, κ) = C(κ) exp (κmᵀy) for unit vector y where κ is a scalar parameter,
‖m‖2 = 1, andC(κ) is a normalization constant. κ should be set to reflect the
choice of α. If the training loss is perfect and d(µk,x

k
i) < α,∀i = 1, . . . , Nk,

then all of the xki lie within a ball with angular radius cos−1(1− 2α) of µk. In
our experiments, we set α = 0.02, giving cos−1(1− 2α) ≈ 16 degrees. Thus,
we set κ = 10, resulting in almost 50% of the density being concentrated in
a ball with radius 16 degrees around m (by eyeing Figure 2.12 of [151]).

Running the full vMF-MS clustering is inefficient due to our trajectory
representation being pixel-dense. Instead, we run the algorithm on a few
randomly chosen seeds that are far apart in cosine distance. If the network
learns to correctly predict clustered trajectory embeddings, then this random
initialization should provide little variance in the results. Furthermore, we
use a PyTorch-GPU implementation of the vMF-MS clustering for efficiency.

2.3 Experiments

Datasets. We evaluate our method on video foreground segmentation
and multi-object motion segmentation on five datasets: Flying Things 3d
(FT3D) [105], DAVIS2016 [120], Freibug-Berkeley motion segmentation [115],

38

Complex Background [111], and Camouflaged Animal [15]. For FT3D, we
combine object segmentation masks with foreground labels provided by
[161] to produce motion segmentation masks. For DAVIS2016, we use the
J -measure and F -measure for evaluation. For FBMS, Complex Background,
and Camouflaged Animal, we use precision, recall, and F-score, and ∆Obj
metrics for evaluation as defined in [115, 16].

It is well-understood that the original FBMS labels are ambiguous [14].
Some labels exhibit multiple segmentations for one aggregate motion, or
segment the (static) background into multiple regions. Thus, [14] provides
corrected labels which we use for evaluation.
Implementation Details. We train our networks using stochastic gradient
descent with a fixed learning rate of 1e-2. We use backpropagation through
time with sequences of length 5 to train the PT-RNN. Each image is resized
to 224 × 400 before processing. During training (except for FT3D), we
perform data augmentation, which includes translation, rotation, cropping,
horizontal flipping, and color warping. We set C = 32, α = 0.02, δ =

0.5, κ = 10. We extract optical flow via [69].
Labels for each foreground trajectory are given by the frame-level label

of the last pixel in the trajectory. Due to sparse labeling in the FBMS training
dataset, we warp the labels using Eq. (2.1) so that each frame has labels.
Lastly, due to the small size of FBMS (29 videos for training), we leverage
the DAVIS2017 dataset [125] and hand select 42 videos from the 90 videos
that roughly satisfy the rubric of [14] to augment the FBMS training set. We
denote this as DAVIS-m.

When evaluating the full model on long videos, we suffer from GPU
memory constraints. Thus, we devise a sliding window scheme to handle
this. First, we cluster all foreground trajectories within a window. We
match the clusters of this window with the clusters of the previous window
using the Hungarian algorithm. We use distance between cluster centers
as our matching cost, and further require that matched clusters must have
d(µk, µk′) < 0.2. When a cluster is not matched to any of the previous
clusters, we declare it a new object. We use a 5-frame window and adopt
this scheme for the FBMS and Camouflaged Animal datasets.

39

FT3D DAVIS FBMS
Y-Net 0.905 0.701 0.631

Early Fusion 0.883 0.636 0.568
Late Fusion 0.897 0.631 0.570

Table 2.2: Fusion ablation. Performance is measured in IoU.

In Section 2.3.2, we use the conv PT-RNN variant of Figure 2.2, trained
for 150k iterations on FT3D, then fine-tuned on FBMS+DAVIS-m for 100k
iterations.

Our implementation is in PyTorch, and all experiments run on a single
NVIDIA TitanXP GPU. Given optical flow, our algorithm runs at approx-
imately 15 FPS. Note that we do not use a CRF post-processing step for
motion segmentation.

2.3.1 Ablation Studies

Fusion ablation. We show the choice of mid-level fusion with Y-Net is
empirically a better choice than early fusion and late fusion of encoder-
decoder networks. For early fusion, we concatenate RGB and optical flow
and pass it through a single U-Net. For late fusion, there are two U-Nets:
one for RGB and one for optical flow, with a conv layer at the end to fuse
the outputs. Note that Y-Net has more parameters than early fusion but less
parameters than late fusion. Table 2.2 shows that Y-Net outperforms the
others in terms of foreground IoU. Note that the performance gap is more
prominent on the real-world datasets.
Architecture ablation. We evaluate the contribution of each part of the
model and show results in both the multi-object setting and the binary
setting (foreground segmentation) on the FBMS testset. All models are
pre-trained on FT3D for 150k iterations and trained on FBMS+DAVIS-m for
100k iterations. Experiments with the different PT-RNN variants shows that
conv PT-RNN performs the best empirically in terms of F-score, thus we use
this in our comparison with state-of-the-art methods. Standard performs
similarly, while convGRU performs worse perhaps due to overfitting to the
small dataset. Next, we remove the PT-RNN architecture (per-frame embed-

40

Multi-object Foreground
P R F ∆Obj P R F

conv PT-RNN 75.9 66.6 67.3 4.9 90.3 87.6 87.7
standard PT-RNN 72.2 66.6 66.0 4.27 88.1 89.3 87.5

convGRU PT-RNN 73.6 63.8 64.8 4.07 89.6 85.8 86.3
per-frame embedding 79.9 56.7 59.7 11.2 92.1 85.4 87.4

no FG mask 63.5 60.3 59.6 1.97 82.5 85.7 82.1
no SCM 70.4 65.5 63.2 3.70 89.3 89.1 88.1

no pre-FT3D 70.2 63.6 63.1 3.66 87.6 88.2 86.3
no DAVIS-m 66.9 63.6 62.1 2.07 87.1 86.9 85.2

Table 2.3: Architecture and Dataset ablation on FBMS testset.

ding) and cluster the foreground pixels at each frame. The F-score drops
significantly and ∆Obj is much worse, which is likely due to this version
not labeling clusters consistently in time. Because the foreground prediction
is not affected, these numbers are still reasonable. Next, we remove fore-
ground masks (no FG mask) and cluster all foreground and background
trajectories. The clustering is more sensitive; if the background trajectories
are not clustered adequately in the embedding space, the performance will
suffer. Lastly, we removed the spatial coordinate module (no SCM) and ob-
served lower performance. Similar to the per-frame embedding experiment,
foreground prediction is not affected.
Dataset ablation. We also study the effects of the training schedule and
training dataset choices. In particular, we first explore the effect of not
pre-training on FT3D, shown in the bottom portion of Table 2.3. Secondly,
we explore the effect of training the model only on FBMS (without DAVIS-
m). Both experiments show a noticeable drop in performance in both the
multi-object and foreground/background settings, showing that these ideas
are crucial to our performance.

2.3.2 Comparison to State-of-the-Art Methods

Video Foreground Segmentation. For FBMS, ComplexBackground and
CamouflagedAnimal, we follow the protocol in [16] which converts the

41

Video Foreground Segmentation Multi-object Motion Segmentation
PCM [15] FST [116] NLC [47] MPNet [161] LVO [160] CCG [16] Ours CVOS [157] CUT [78] CCG [16] Ours

FB
M

S

P 79.9 83.9 86.2 87.3 92.4 85.5 90.3 72.7 74.6 74.2 75.9
R 80.8 80.0 76.3 72.2 85.1 83.1 87.6 54.4 62.0 63.1 66.6
F 77.3 79.6 77.3 74.8 87.0 81.9 87.7 56.3 63.6 65.0 67.3

∆Obj - - - - - - - 11.7 7.7 4.0 4.9

C
B

P 84.3 87.6 79.9 86.8 74.6 87.7 83.1 60.8 67.6 64.9 57.7
R 91.7 85.0 69.3 77.5 77.0 93.1 89.7 44.7 58.3 67.3 61.9
F 86.6 80.6 73.7 78.2 70.5 90.1 83.5 45.8 60.3 65.6 58.3

∆Obj - - - - - - - 3.4 3.4 3.4 3.2

C
A

P 81.9 73.3 82.3 77.8 77.6 80.4 78.5 84.7 77.8 83.8 77.2
R 74.6 56.7 68.5 62.0 51.1 75.2 79.7 59.4 68.1 70.0 77.2
F 76.3 60.4 72.5 64.8 50.8 76.0 77.1 61.5 70.0 72.2 75.3

∆Obj - - - - - - - 22.2 5.7 5.0 5.4

A
ll

P 80.8 82.1 84.7 85.3 87.4 84.7 87.1 73.8 74.5 75.1 74.1
R 80.7 75.8 73.9 70.7 77.2 82.7 86.2 54.3 62.8 65.0 68.2
F 78.2 75.8 75.9 73.1 77.7 81.5 85.1 56.2 64.5 66.5 67.9

∆Obj - - - - - - - 12.9 6.8 4.1 4.8

Table 2.4: Results for FBMS, ComplexBackground (CB), CamouflagedAni-
mal (CA), and averaged over all videos in these datasets (ALL). Best results
are highlighted in red with second best in blue.

motion segmentation labels into a single foreground mask and use the
metrics defined in [115] and report results averaged over those three datasets.
We compare our method to state-of-the-art methods including PCM [15], FST
[116], NLC [47], MPNet [161], LVO [160], and CCG [16]. We report results
in Table 2.4. In terms of F-score, our model outperforms all other models on
FBMS and CamouflagedAnimal, but falls just short on ComplexBackground
behind PCM and CCG. Looking at all videos, we show a relative gain of
4.4% on F-score compared to the second best method CCG, due to our high
recall.

Additionally, we report results of our model on FT3D and the validation
set of DAVIS2016. We compare our model to state-of-the-art methods:
including LVO [160], FSEG [70], MPNet [161], and FST [116] in Table 2.5. For
this experiment only, we train a Y-Net with C = 64 channels on FT3D for
100k iterations, resulting in outperforming MPNet by a relative gain of 5.6%.
We then fine-tune for 50k iterations on the training set of DAVIS2016 and
use a CRF [86] post-processing step. We outperform all methods in terms of
F-measure and all methods but LVO on J -measure. Note that unlike LVO,
we do not utilize an RNN for video foreground segmentation, yet we still
achieve performance comparable to the state-of-the-art. Also, LVO [160]
reports a J -measure of 70.1 without using a CRF, while our method attains

42

FST [116] FSEG [70] MPNet [161] LVO [160] Ours

DAVIS
J 55.8 70.7 70.0 75.9 74.2
F 51.1 65.3 65.9 72.1 73.9

FT3D IoU - - 85.9 - 90.7

Table 2.5: Results on Video Foreground Segmentation for DAVIS2016 and
FT3D. Best results are highlighted in red.

a J -measure of 71.4 without using a CRF. This demonstrates the efficacy of
the Y-Net architecture.
Multi-object Motion Segmentation. We compare our method with state-
of-the-art methods CCG [16], CUT [78], and CVOS [157]. We report our
results in Table 2.4. We outperform all models on F-score on the FBMS
and CamouflagedAnimal datasets. On FBMS, we dominate on precision,
recall, and F-score with a relative gain of 3.5% on F-score compared to
the second best method CCG. Our performance on ∆Obj is comparable
to the other methods. On CamouflagedAnimal, we show higher recall
with lower precision, leading to a 4.4% relative gain in F-score. Again,
our result on ∆Obj is comparable. However, our method places third on
the ComplexBackground dataset. This small 5-sequence dataset exhibits
backgrounds with varying depths, which is hard for our network to correctly
segment. However, we still outperform all other methods on F-score when
looking at all videos. Similarly to the binary case, this is due to our high
recall.

To illustrate our method, we show qualitative results in Figure 2.5. We
plot RGB, optical flow [69], groundtruth, results from the state-of-the-art
CCG [16], and our results on 4 sequences (goats01, horses02, and cars10
from FBMS, and forest from ComplexBackground). On goats01, our results
illustrate that due to our predicted foreground mask, our method is able
to correctly segment objects that do not have instantaneous flow. CCG
struggles in this setting. On horses02, we show a similar story, while CCG
struggles to estimate rigid motions for the objects. Note that our method
provides accurate segmentations without the use of a CRF post-processing
step. We show two failure modes for our algorithm: 1) if the foreground

43

RGB Flow GT CCG Ours RGB Flow GT CCG Ours

Figure 2.5: Qualitative results for motion segmentation. The videos are:
goats01, horses02, and cars10 from FBMS, and forest from ComplexBack-
ground.

mask is poor, the performance suffers as shown on cars10 and forest, and 2)
cluster collapse can cause multiple objects to be segmented as a single object
as shown in cars10.

2.4 Discussion

In this chapter, we proposed a novel deep network architecture, PT-RNN,
for solving the problem of discovering unseen object instances using object
motion cues. We formulated the problem as foreground motion clustering,
and introduced an encoder-decoder network that learns representations of
video frames and optical flow along with a novel recurrent neural network
that learns feature embeddings of pixel trajectories inside foreground masks.
By clustering these embeddings, we are able to discover and segment po-
tentially unseen objects in videos. We demonstrated the efficacy of our
approach on several motion segmentation datasets for object discovery.

A strong assumption of this chapter is that objects of interest undergo
motion. In our recurring example of a robot being deployed in a new
unstructured environment such as a house or office, the objects to be manip-

44

ulated are typically inanimate objects (e.g. toys), which will not experience
motion unless physically manipulated by an external force. This implies
that the robot will have to physically touch each object in order to observe
motion cues for the unseen object before potentially applying a method such
as PT-RNN. As the number of unseen objects may be very large, this clearly
will not scale and we will need some other priors for detecting unseen ob-
jects that do not require motion. In the next chapter, we will investigate a
method that exploits a different visual cue for doing so from static images,
namely geometry cues.

45

Chapter 3

Unseen Object Instance
Segmentation for Robotic
Environments
This chapter discusses work originally published in Xie et al. [178].

For a robot to function in an unstructured environment, it must have
the ability to recognize new objects that have not been seen before. Assum-
ing every object in the environment has been modeled is infeasible and
impractical. Recognizing unseen objects is a challenging perception task
since the robot needs to learn the concept of “objects” and generalize it to
unseen objects. Building such a robust object recognition module is valuable
for robots interacting with objects, such as picking up unseen objects or
learning to use new tools [109, 110, 108]. A common environment in which
manipulation tasks take place is on tabletops. Thus, we approach this by
focusing on the problem of Unseen Object Instance Segmentation (UOIS),
where the goal is to segment every arbitrary (and potentially unseen) object
instance, in tabletop environments.

In order to ensure the generalization capability of the module to recog-
nize unseen objects, we need to learn from data that contains large amounts
of various objects. However large-scale datasets with this property do not

46

exist. Since collecting a large dataset with manual annotations is expensive
and time-consuming, it is appealing to utilize synthetic data for training,
such as using the ShapeNet repository which contains thousands of 3D
objects [24]. However, there exists a domain gap between synthetic data
and real-world data as many simulators do not provide realistic-looking
images. Training directly on such synthetic data only usually does not work
well in the real world [183], which is also evidenced by Figure 1.1. Addition-
ally, synthesizing photo-realistic images with physics-based rendering can
be computationally expensive [64], making large photorealistic synthetic
datasets impractical to obtain.

Consequently, recent efforts in robot perception have been devoted to
the problem of Sim-to-Real, where the goal is to transfer capabilities learned
in simulation to real-world settings. For instance, some works have used
domain adaptation techniques to bridge the gap when unlabeled real data is
available [163, 19]. Domain randomization [159] was proposed to diversify
the rendering of synthetic data for training. While these techniques attempt
to fix the discrepancy between synthetic and real-world RGB, models trained
with synthetic depth have been shown to generalize reasonably well for
simple settings such as bin-picking [103, 37]. However, in more complex
settings, noisy depth sensors can limit the application of such methods and
models trained on RGB have been shown to produce accurate masks [63].
An ideal method should combine the generalization capability of training
on synthetic depth and the ability to produce sharp masks by utilizing RGB.

In this chapter, we investigate how to utilize synthetic RGB-D images for
UOIS in tabletop environments. We show that simply combining synthetic
RGB images and synthetic depth images as inputs does not generalize well
to the real world. To tackle this problem, we propose a two-stage network
architecture called UOIS-Net that separately leverages the strengths of RGB
and depth for UOIS. Our first stage is a Depth Seeding Network (DSN)
that utilizes only depth to produce object instance center votes, which are
then used to compute rough initial instance masks. We compare multiple
architectures for the DSN that produce center votes in 2D and 3D. Training
the DSN with depth images allows for better generalization to real-world

47

Depth	Seeding	
Network:

Leverage	Depth

Region	Refinement	
Network:

Leverage	RGB

Input:	Depth

Input:	RGB

Initial	Mask

Refined	Mask

Figure 3.1: High level overview of the proposed two-stage framework of
UOIS-Net. The first stage leverages depth only to produce rough initial
masks. The second stage then leverages RGB to refine the initial masks to
produce accurate, sharp instance masks.

data. However, the initial masks from the DSN may contain inaccurate
object boundaries due to depth senor noise. In this case, exploiting textures
in RGB images can significantly help.

Thus, our second stage is a Region Refinement Network (RRN) that
takes an initial mask from the DSN and an RGB image as input and outputs
a refined mask. Our surprising result is that, conditioned on initial masks,
our RRN can be trained on non-photorealistic synthetic RGB images without
adopting any of the afore-mentioned Sim-to-Real solutions. We posit that
mask refinement is an easier problem than directly using RGB as input to
produce masks, mainly because the mask refinement uses a local image
patch as input and focuses on a single object. We empirically show robust
generalization across many different objects in cluttered real-world data. In
fact, our RRN works almost as well as if it were trained on real data. Our
framework produces sharp and accurate masks even when the depth images
are noisy. We show that it outperforms state-of-the-art methods including
Mask R-CNN [63] and PointGroup [72]. Figure 3.1 illustrates our two-stage
framework.

To train our method, we introduce a synthetic dataset of tabletop objects
in home environments, which we name Tabletop Object Dataset (TOD).
Our dataset consists of indoor scenes of random ShapeNet [24] objects on

48

random ShapeNet tables. We use the PyBullet physics simulator [36] to
generate the scenes and render depth and non-photorealistic RGB. Training
our proposed method on this dataset results in state-of-the-art results on
multiple real-world datasets for UOIS.

3.1 Related Works

3.1.1 Category-level Object Segmentation

2D semantic segmentation involves assigning pixels in an image to a set
of known classes. Deep learning has emerged as the most popular tool for
solving this problem [147, 28, 6, 30, 98]. [147] first introduced the concept of
using a fully convolutional architecture (FCN). [28] designed an architecture
that utilizes dilated convolutions in order to increase the receptive field.
[6, 30] further improves performance by introducing decoder architectures
on top of the encoders. [98] proposed a multi-path refinement network
with long-range residual connections to enable high-resolution predictions.
These methods have demonstrated strong performance on datasets such as
PASCAL [101] and COCO [99].

Much work has been devoted to solving the semantic segmentation
problem in 3D as well. A common representation of 3D space is voxels;
however operating with voxel grids as input can be expensive both compu-
tationally and memory-wise. Thus, [57] introduced a submanifold sparse
convolutional operator to preserve spatial sparsity of the input. [34] further
generalized these sparse convolutions to arbitrary kernel shapes, improv-
ing performance. Other 3D methods utilize point clouds. [127] proposed
PointNet, a permutation-invariant network architecture to handle point
clouds, and [130] extended this to a hierarchical network that recursively
applies PointNet in order to obtain multi-resolution features, similar to
deep convolutional networks with decreasing resolutions via strides/max
pooling.

The advent of RGB-D sensors such as Kinect allowed the research com-
munity to utilize of both modalities for semantic segmentation, and drove

49

the creation of datasets such as [112]. [134] investigated a combination of
kernel descriptors, support vector machines, and Markov random fields
for indoor scene segmentation. Both [91] and [170] leverage RGB-D videos,
extracting 2D features from each RGB frame and integrating them with
a reconstructed voxel representation of the scene. Deep learning-based
approaches include [58, 165, 131]. [58] proposed the HHA encoding of
depth images. The authors used this encoding to design an object detection
system, which they further exploited to improve semantic segmentation
performance. [147] also used the HHA in their pioneering work on FCNs.
[165] proposed a depth-aware convolution and pooling mechanism to in-
corporate geometry into the convolution operators to build a depth-aware
receptive field. [131] used the output of a 2D segmentation network to
initialize node features of a graph neural network applied on a 3D point
cloud which was backprojected from a depth image. In this chapter, we also
leverage RGB-D images, but focus on segmenting each individual object
with unknown object class.

3.1.2 Instance-level Object Segmentation

2D object instance segmentation is the problem of segmenting every object
instance in an image. Many approaches for this problem involve top-down
solutions that combine segmentation with object proposals in the form of
bounding boxes [63, 95, 29, 83], typically produced by a region proposal
network (RPN). FCIS [95] utilizes position-sensitive inside/outside score
maps for fully end-to-end convolutional instance segmentation. Mask R-
CNN [63], a prominent work in the field, predicts a foreground mask for
each object proposal. [29] builds on top of both FCIS and Mask R-CNN
and exploits semantic segmentation and direction predictions to assemble
foreground masks. [83] proposes a module that iteratively refines segmen-
tation predictions at adaptively selected locations, which can be used in
conjunction with Mask R-CNN.

However, when bounding boxes contain multiple objects (e.g. clut-
tered robot manipulation setups), the true instance mask is ambiguous

50

and these methods struggle. Recently, a few methods have investigated
bottom-up methods which assign pixels to object instances [42, 113, 114, 146].
Other methods examine dense sliding-window instance segmentation on
4D tensors [32], combining top-down and bottom-up methods via blending
modules [27], and alternative mask representations such as contours [119].
Additionally, interactive instance segmentation has shown strong results
with few user inputs [104].

Most of the afore-mentioned algorithms provide instance masks with
category-level semantic labels, which do not generalize to unseen objects in
novel categories. One approach to adapting these techniques to unseen ob-
jects is to employ “class-agnostic” training, which treats all object classes as
one foreground category [37]. One family of methods exploits motion cues
with class-agnostic training in order to segment arbitrary moving objects
[174, 40], such as PT-RNN introduced in Chapter 2. Another family of meth-
ods are class-agnostic object proposal algorithms [122, 123, 89]. However,
these methods will segment everything and require some post-processing
method to select the masks of interest. [145] jointly estimates instance seg-
mentation masks and rigid scene flow, similar to [21, 22]. We also train our
proposed method in a class-agnostic fashion, but instead focus our notion
of unseen objects in particular environments such as tabletop settings.

In 3D instance segmentation, researchers have recently been investigat-
ing architectures to apply on point clouds/voxel grids. [66] introduced
the first deep learning method to fuse RGB and geometric information
from RGB-D scans. [60] proposed an occupancy term which greatly aids
supervoxel clustering, leading to strong results. A few of these methods
embrace center voting-based techniques [90, 128, 129, 46, 72]. [90] utilizes
metric learning to learn abstract features, and predicts center votes which
are post-processed by meanshift clustering. [128] uses the center votes with
a simple grouping mechanism to detect 3D bounding boxes of objects from
point clouds only. Their follow up work [129] incorporates RGB information
by lifting 2D votes and features into 3D. [46] follows a similar architecture
but stacks a graph convolutional network to refine proposal features. [72]
also performs clustering on votes and semantic features for targeted perfor-

51

mance on certain object classes. Our method takes inspiration from these
voting-based methods, but is targeted to cluttered robot environments.

3.1.3 Sim-to-Real Perception

Training a model on synthetic RGB and directly applying it to real data
typically fails [183]. Many methods employ some level of rendering ran-
domization [172, 162, 96, 159, 124, 137], including lighting conditions and
textures. However, they typically assume specific object instances and/or
known object models. Another family of methods employ domain adap-
tation to bridge the gap between simulated and real images [163, 19]. Al-
gorithms trained on depth have been shown to generalize reasonably well
for simple settings [103, 37]. However, noisy depth sensors can limit the
application of such methods. Our proposed method is trained purely on
(non-photorealistic) synthetic RGB-D data and is accurate even when depth
sensors are inaccurate, and can be trained without adapting or randomizing
the synthetic RGB.

3.2 Method

Given a single RGB-D image, the goal of our algorithm is to produce object
instance segmentation masks for all objects on a tabletop, where the object
instances (or even the semantic class) are arbitrary and are not assumed to
have been seen during a training phase. These masks do not have any notion
of class categorization or semantics. These masks can be employed by robots
for interacting with unseen object instances in downstream applications
such as grasping and/or manipulation. We focus the problem in tabletop
environments, which is very common to current robotic manipulation tasks.

Our framework consists of two separate networks that process Depth
and RGB separately to produce instance segmentation masks. First, we de-
sign a Depth Seeding Network (DSN) that takes a depth image as input and
outputs initial object instance segmentation masks. These initial masks can
be quite noisy for a number of reasons, thus we design an Initial Mask Pro-

52

Initial	Mask	Processor

Open/Close
Morphological

Transform

Largest Connected
Component

Region Refinement Network

Refined
Masks

Depth Seeding Network

Foreground

Center Votes

Depth Initial Masks
RGB

Figure 3.2: Overall architecture. The Depth Seeding Network (DSN) is
shown in the red box, the Initial Mask Processor (IMP) in the green box, and
the Region Refinement Network (RRN) in the blue box. The images come
from a real example taken by an RGB-D camera in our lab. Despite the level
of noise in the depth image (due to reflective table surface), our method is
able to produce sharp and accurate instance masks. Gradients do not flow
backwards through dotted lines.

cessor (IMP) to robustify them with standard image processing techniques.
We further refine the processed initial masks using our Region Refinement
Network (RRN), which is designed to snap the noisy initial mask edges to
object edges in RGB, providing sharp and accurate final instance masks. The
full architecture is shown in Figure 3.2.

Because the DSN incorporates non-differentiable techniques in order to
build the initial masks, our DSN and RRN are trained separately as opposed
to end-to-end. Both the DSN and RRN can be trained fully in simulation
with no fine-tuning on real-world data, allowing our framework to capitalize
on large amounts of simulated scenes and objects without resorting to the ex-
pensive process of annotating data. Our framework generalizes remarkably
well to real-world scenarios despite being trained only on non-photorealistic
simulated data, enabling robotic tasks with unseen objects.

3.2.1 Depth Seeding Network

It has been shown that depth generalizes reasonably well for Sim-to-Real
problems [103, 37, 141]. Inspired by this concept, we focus the first stage

53

of our framework on depth only to produce initial class-agnostic instance
segmentation masks. At a high level, the DSN takes as input a 3-channel
organized point cloud, D ∈ RH×W×3, of XYZ coordinates, and outputs
initial instance segmentation masks. Note that D can be computed by
backprojecting a depth map given camera intrinsics.

We examine two methods of structuring the DSN. First, we investigate
building initial masks by predicting centers in 2D pixel space. While this
method provides state-of-the-art results, it has some obvious pitfalls (exam-
ined in Section 3.4) that motivates a novel architecture that builds masks by
predicting centers in 3D space.

Reasoning in 2D

Network Architecture The organized point cloud D is passed through an
encoder-decoder architecture to produce two outputs: a semantic segmenta-
tion mask F ∈ RH×W×C , where C is the number of semantic classes, and
2D directions to object centers V ∈ RH×W×2. We use C = 3 for our semantic
classes: background, tabletop, and tabletop objects. Each pixel of V encodes
a 2-dimensional unit vector pointing to the 2D center of the object. We define
the center of the object to be the mean pixel location of the observable mask
(part of mask that is unoccluded). Although we do not explicitly make use of
the tabletop label in Section 3.4, it can be used in conjunction with RANSAC
[52] in order to better estimate the table for downstream applications. For
the encoder-decoder architecture, we use a U-Net [136] architecture where
each 3× 3 convolutional layer is followed by a GroupNorm layer [169] and
ReLU. The output of the U-Net is a feature map of shape RH×W×64. Sitting
on top of this is two parallel branches of convolutional layers that produce
the foreground mask F and center directions V (Figure 3.2). While we use
U-Net for the DSN architecture, our framework is not limited to this and
can replace it with any network architecture.

In order to compute the initial segmentation masks from F and V , we
design a Hough voting layer similar to [172]. We describe the pseudocode
detailed in Algorithm 1. First, we discretize the space of angles [0, 2π] into

54

Algorithm 1 Hough Voting Procedure Pseudocode

Require: F , V , cosine distance dc, number of angle bins A. Robustness pa-
rameters: inlier threshold εit, distance threshold εd, percentage threshold
εpt.

1: return Initial instance masks S
2: InitializeH ∈ RH×W×A to zeros
3: for potential center pc ∈ Ω do
4: for p ∈ F do
5: if dc(pc − p, Vp) < εit AND d(pc, p) < εd then
6: a = bA · dc (pc − p, [0, 1])c # discretized angle
7: Hpc,a = 1
8: end if
9: end for

10: end for
11: Compute local maximums C ofH using NMS and εpt
12: Compute S with C, V

A equally spaced bins. For every pixel, we compute the percentage of
discretized directions from all other foreground pixels that point to it and
use this as a score for how likely the pixel is an object center (lines 3-10).
We threshold when a foreground pixel points to it with an inlier threshold
and distance threshold. We then threshold the percentages and apply non-
maximum suppression (NMS) to select object centers (line 11). Given these
object centers, each pixel is assigned to the closest center it points to (line
12), which gives the initial masks as shown in the red box of Figure 3.2.
Note that the inlier, distance, and percentage thresholds provide the Hough
voting layer with robustness. For example, if not enough foreground pixels
from all directions point towards a potential object center, that center is not
selected. This robustifies the algorithm by protecting against false positives.
We qualitatively show the efficacy of these design choices in Section 3.4.5.

Loss Functions To train the DSN, we apply two different loss functions
on the semantic segmentation F and the direction prediction V .

55

Foreground Loss For the semantic segmentation F , we use a weighted
cross entropy as this has been shown to work well in detecting object bound-
aries in imbalanced images [179]. The loss is `fg =

∑
iwi `ce

(
Fi, F̄i

)
where

i ranges over pixels, Fi, F̄i are the predicted and ground truth probabilities
of pixel i, respectively, and `ce is the cross-entropy loss. The weight wi
is inversely proportional to the number of pixels with labels equal to F̄i,
normalized to sum to 1.

Direction Loss We apply a weighted cosine similarity loss to the di-
rection prediction V . The cosine similarity is focused on the tabletop object
pixels, but we also apply it to the background/tabletop pixels to have them
point in a fixed direction to avoid false positives. The loss is given by

`dir =
∑
i∈O

αi
(
1− V ᵀ

i V̄i
)

+
λbt
|B ∪ T |

∑
i∈B∪T

(
1− V ᵀ

i

[
0

1

])
, (3.1)

where Vi, V̄i are the predicted and ground truth unit directions of pixel i,
respectively. B, T ,O are the sets of pixels belonging to background, table,
and object/foreground classes, respectively. Note that B∪T ∪O = Ω, where
Ω is the set of all pixels. αi is inversely proportional to the number of pixels
with the same instance label as pixel i, which gives equal weight to each
instance regardless of size. We set λbt = 0.1. The total loss for our 2D DSN
is given by `fg + `dir.

Reasoning in 3D

Reasoning in 2D has some failure cases that can be mitigated by reasoning
in 3D. For example, if the center of an object is occluded by another object,
the 2D center voting procedure will not detect that object (examples of this
can be found in Section 3.4.5). Thus, we propose a new architecture to
the DSN to better handle these cases and provide stronger results. This
formulation requires more sophisticated loss functions. In particular, we
introduce a novel separation loss that significantly improves accuracy in
cluttered scenes.

56

Network Architecture The network architecture of this 3D DSN is almost
the same as the 2D DSN. The input is the same, which is the organized point
cloud D of XYZ coordinates. The main difference between the 2D DSN and
the 3D DSN is the output. Our 3D DSN still outputs the semantic segmenta-
tion mask F , but produces 3D offsets to object centers V ′ ∈ RH×W×3 instead
of 2D directions V . Note that elements in V ′ are not unit vectors, which
is the case with V . Since V ′ are 3D offsets, D + V ′ is the predicted object
centers for each pixel, which we will refer to as “center votes”.

We propose to modify the architecture to use dilated convolutions [181]
in order to provide the DSN with a higher receptive field. We replace the
6th, 8th, and 10th convolution layers with ESP modules [106]. An ESP module
is a lightweight module consisting of a reduction operation, a split/transform
component that applies convolutions with different dilation rates to get a
spatial pyramid, and a merge process that hierarchically fuses the feature
maps of the spatial pyramid [106]. The ESP module has less parameters than
the convolution layer it replaces, making it more computationally efficient.
Details of the implementation can be found in the public code release at the
project website1. We show in Section 3.4.6 that adding this module provides
a boost in performance.

To compute initial masks, we perform mean shift clustering in 3D space
over our center votes D+ V ′. Mean shift clustering is an iterative procedure
to find the modes of a distribution approximated by a kernel density esimate
(KDE). The number of clusters (objects, in our case) is not determined
beforehand, but instead by the number of modes in the KDE. We use the
Gaussian kernel K(x, y) = exp

(
1
σ2 ‖x− y‖22

)
, which results in Gaussian

mean shift (GMS) clustering. σ > 0 is a hyperparameter which affects
the number of modes (objects) in the KDE. Thus, the choice of σ is crucial
and depends on the relative distance between objects, which is low in
clutter. A detailed review of mean shift clustering algorithms can be found
in [23]. After clustering, each pixel is assigned to the cluster ID of its center
vote to generate the initial masks. The clustering is only applied to the

1https://rse-lab.cs.washington.edu/projects/
unseen-object-instance-segmentation/

57

https://rse-lab.cs.washington.edu/projects/unseen-object-instance-segmentation/
https://rse-lab.cs.washington.edu/projects/unseen-object-instance-segmentation/

foreground pixels. Note that this method of producing initial masks lacks
the thresholds such as εit, εd, εpt from the 2D DSN Hough voting layer that
provide robustness.

Loss Functions We apply four loss functions on the semantic segmentation
F and center offsets V ′ to train the 3D-reasoning version of the Depth
Seeding Network.

Foreground Loss We utilize the same foreground loss as in Section 3.2.1
for the 2D DSN, `fg.

Center Offset Loss We apply a Huber loss ρ (Smooth L1 loss) to the
center offsets V ′ to penalize the distance of the center votes to their corre-
sponding ground truth object centers.

`co =
∑
i∈Ω

wiρ
(
Di + V ′i − ci

)
, (3.2)

where ci is the 3D coordinate of the ground truth object center for pixel i.
Like `fg, the weight wi is inversely proportional to the number of pixels
with the same instance label yi. For object centers that are out of view of the
camera, we project them to the camera’s field of view.

Clustering Loss We adopt a clustering loss that unrolls GMS for a few
iterations and applies a loss on the clustered points, very similar to [85].
GMS iteratively shifts a set of S 3D seed points, Z ∈ RS×3, to higher density
regions of the KDE in a gradient ascent-type fashion [23]. Let Z(l) be the
points at the lth iteration of GMS. Z(0) is initialized as the center votes
X = D + V ′ ∈ R|O|×3 of the foreground pixels. One iteration of GMS
amounts to Z(l+1) = D̃−1KX where K ∈ RS×|O| is the kernel matrix s.t.
[K]ij = K(Z

(l)
i , Xj), and D̃ = diag(K1) with 1 ∈ R|O| being a vector of

all ones. Note that K depends on σ. This iteration can be seen as a layer
in the network with no parameters for learning. We apply the following

58

loss function to Z(l) and X , with the corresponding object instance labels
Y ∈ R|O|:

`
(l)
cl (Z(l), X, Y) =

S∑
i=1

∑
j∈O

wij1{yi = yj}d2(Z
(l)
i , Xj)

+wij1{yi 6= yj}[δ − d(Z
(l)
i , Xj)]

2
+

(3.3)

where wij are inverse proportional weights w.r.t. class size, d(·, ·) is Eu-
clidean distance, and [·]+ = max(·, 0). This loss function influences the KDE
modes to be close to its points, and at least δ away from points not belonging
to the cluster, encouraging the points X = D + V ′ to be more cluster-like.

Applying Eq. (3.3) to all points, i.e. S = |O|, results in excessive memory
usage, thus we instead adopt a stochastic version of this loss function. We
randomly sample an index set I ⊂ {1, 2, . . . , |O|} and setZ(0) = XI , and run
GMS clustering only on these points. We unroll GMS for L iterations, and
apply `(l)cl at each iteration, giving the full cluster loss `cl = `

(1)
cl + . . .+ `

(L)
cl .

Separation loss We introduce a novel separation loss that encourages
the center votes to not necessarily be at the center of an object, as long as it is
far away from other object center votes in order to ease the post-processing
GMS clustering phase. To do this, we consider the following tensor:

Mij =
exp (−τ d(cj , Di + V ′i))∑J

j′=1 exp
(
−τ d(cj′ , Di + V ′i)

) (3.4)

where cj is the jth ground truth object center, i ∈ O, and τ > 0 is a hy-
perparameter. This is simply the distance from center vote Di + V ′i to all
object centers scaled by τ , with a softmax applied. We apply a cross entropy
loss `sep(Mij) = −∑N

j=1 1{yi = j} log(Mij) in order to maximize Mij when
yi = j.

MaximizingMij for a foreground pixel i and its corresponding GT object
center j encourages 1) the center vote Di + V ′i to be close to cj , and 2) to be
far from {cj | yi 6= yj}. While the `co also enforces property 1, property 2 is
quite desirable in heavy clutter. If two objects are situated in a way such

59

that their 3D object centers are very close, post-processing clustering will be
difficult. This separation loss encourages the network to predict object center
votes that are not close to each other, making the task of post-processing
clustering easier. In Section 3.4.6, we show that this loss is crucial for strong
performance in heavy clutter.

In summary, the total loss used to train the 3D DSN is given by λfg`fg +

λco`co + λcl`cl + λsep`sep.

3.2.2 Initial Mask Processing Module

Computing the initial masks from F and V/V ′ often results in noisy masks
(see an example of initial masks computed from the 2D DSN using our
Hough voting layer in Figure 3.2). For example, these instance masks
often exhibit salt/pepper noise and erroneous holes near the object center
(see Section 3.4.5 for examples). As shown in Section 3.4.4, the RRN has
trouble refining the masks when they are scattered as such. To robustify the
algorithm, we propose to use two simple image processing techniques to
clean the masks before refinement.

For a single instance mask, we first apply an opening operation, which
consists of mask erosion followed by mask dilation [142], removing the
salt/pepper noise issues. Next we apply a closing operation, which is
dilation followed by erosion, which closes up small holes in the mask.
Finally, we select the largest connected component and discard all other
components. Note that these operations are applied to each instance mask
separately. These simple image processing techniques are immensely helpful
in robustifying the system.

3.2.3 Region Refinement Network

While depth generalizes reasonably well from Sim-to-Real, the initial masks
(after IMP) are still subject to many errors due to noisy depth sensors. The
RRN is designed to snap the initial mask edges to the object edges in RGB to
provide accurate and sharp instance masks.

60

Network Architecture

Inspired by [104], this network takes as input a cropped 4-channel image,
which consists of RGB concatenated with a single initial instance mask. The
RGB image is cropped around the instance mask with some padding for
context, concatenated with the (cropped) mask, then resized to 224× 224.
This gives an input image I ∈ R224×224×4. The output of the RRN is the
refined mask probabilities R ∈ R224×224, which we threshold to get the final
output. We use the same U-Net architecture as in the DSN. To train the RRN,
we apply the loss `fg with two classes (foreground vs. background) instead
of three.

Mask Augmentation

Recall that the DSN and RRN are trained separately. In order to train the
RRN, we need examples of perturbed instance masks. While we could train
the RRN with the outputs of the DSN, we found that they are typically too
clean on our synthetic dataset and we achieved better results by perturbing
the ground truth masks instead. This problem can be seen as a data augmen-
tation task where we augment the mask into something that resembles an
initial mask (after the IMP). We detail the different augmentation techniques
used below:

• Translation/rotation: We translate the mask by sampling a displace-
ment vector proportionally to the mask sizefrom a beta distribution.
Rotation angles are sampled uniformly in [−10◦, 10◦].

• Adding/cutting: For this augmentation, we choose a random part of
the mask near the edge, and either remove it (cut) or copy it outside
of the mask (add). This reflects the setting when the initial mask
egregiously overflows from the object, or is only covering part of it.

• Morphological operations: We randomly choose multiple iterations
of either erosion or dilation of the mask. The erosion/dilation kernel
size is set to be a percentage of the mask size, where the percentage is

61

Figure 3.3: Examples from our Tabletop Object Dataset. (Non-photorealistic)
RGB, depth, and instance masks are shown.

sampled from a beta distribution. This reflects inaccurate boundaries
in the initial mask, e.g. due to noisy depth sensors.

• Random ellipses: We sample the number of ellipses to add or remove
in the mask from a Poisson distribution. For each ellipse, we sample
both radii from a gamma distribution and a random rotation angle.
This augmentation requires the RRN to learn to remove irrelevant
blots outside of the object and close up small holes within it.

3.3 Tabletop Object Dataset

Many desired robot environment settings (e.g. kitchens, cabinets) lack
large scale training data to train deep networks. To our knowledge, there
is no large scale dataset for unseen tabletop objects. To remedy this, we
generate our own synthetic dataset which we name the Tabletop Object
Dataset (TOD). This dataset is comprised of 40k synthetic scenes of cluttered
ShapeNet [24] objects on a (ShapeNet) tabletop in SUNCG home environ-
ments [150]. We only use ShapeNet tables that have convex tabletops and
filter the ShapeNet object classes to roughly 25 classes of objects that could
potentially be on a table. Example classes include: jar, mug, helmet, and
pillow.

Each scene in the dataset is of a random room chosen from a random
SUNCG house loaded without any furniture. We sample a ShapeNet table

62

and scale it such that its height is in the range [0.75m, 1m], and place it in
the room so that it is not colliding with walls or other fixtures in the room.
Next, we randomly sample anywhere between 5 and 25 objects to put on
the table, rescaling them such that they are not larger than 1

4 min {th, tl}
where th, tl are the height and length of the table, respectively. The objects
are either randomly placed on the table, on top of another object (stacked),
or generated at a random height and orientation above the table. We use
PyBullet [36] to simulate physics until the objects come to rest and remove
any objects that fell off the table. Next, we generate seven views: one view
is of only background, another is of just the table in the room, and the rest
are taken with random camera viewpoints with the tabletop objects in view.
The viewpoints are sampled at a height of between .5m and 1.2m above
the table and rotated randomly with an angle in [−12◦, 12◦]. The images
are generated at a resolution of 640 × 480 with vertical field-of-view of
45 degrees. The segmentation has a tabletop (table plane only) label and
instance labels for each object.

We show some example images of our dataset in Figure 3.3. The right-
most two examples show that some of our scenes are heavily cluttered. Note
that the RGB looks non-photorealistic. In particular, PyBullet is unable to
load textures of some ShapeNet objects (see gray objects in leftmost two
images). PyBullet was built for reinforcement learning, not computer vision,
thus its rendering capabilities are insufficient for photorealistic tasks [36].
Despite this, our RRN can learn to snap masks to object boundaries from
this synthetic dataset.

3.4 Experiments

We evaluate our method on real datasets against the state-of-the-art (SOTA)
methods Mask R-CNN [63] and PointGroup [72]. We denote our method as
UOIS-Net-2D or UOIS-Net-3D, depending on whether the DSN reasons in
either 2D or 3D.

63

3.4.1 Implementation Details

All images have resolution H = 480,W = 640.

DSN

We train all 2D DSN models for 100k iterations with stochastic gradient
descent (SGD) using a fixed learning rate of 1e-2. We use a batch size of
8 and set λfg = λdir = 1. For the Hough voting layer, we use discretize
the angles into A = 100 bins, and set εit = 0.9, εd = 20, εpt = 0.5. We also
process every 10th pixel instead of every pixel in line 4 of Algorithm 1 for
computational efficiency.

All 3D DSNs are trained for 150k iterations with Adam [81] with initial
learning rate of 1e-4. We use a batch size of 8, with λfg = 3, λco = 5, λcl =

λsep = 1. In training, we rollout the cluster loss `cl L = 5 times and use
|I| = 150 seeds, while we use L = 10, |I| = 200 during test time. δ is set to
0.1. We remove any cluster of pixels that is smaller than 500. Unless stated
otherwise, we use τ = 15, σ = 0.02. Note that we tried learning σ as an
output of the network, however it didn’t perform well, thus we opted to
keep it fixed.

During DSN training, we augment depth maps with multiplicative
gamma noise similar to [103], and add Gaussian Process noise to the back-
projected point clouds.

RRN

All RRNs are trained with SGD for 100k iterations with a fixed learning rate
of 1e-2 and batch size of 16. Inputs to the RRN are padded by 25% of the
initial mask’s bounding box size in each dimension. Our entire pipeline runs
at approximately 3-5 frames per second on a single NVIDIA RTX 2080ti.

Baselines

For the baselines in [152], we use the results graciously provided by the
authors. We follow the official Detectron schedule when training Mask

64

R-CNN [63] on TOD, and train for 100k iterations using SGD with a batch
size of 8. We train PointGroup [72] for 300k iterations with a batch size of
4 on TOD. We remove clustering of the semantic scores since our problem
only has one meaningful semantic class, foreground, which makes no sense
to cluster.

Note that the training procedure for 2D DSNs and Mask R-CNN (re-
ported in [175]) and differs slightly from the training procedure for 3D
DSNs. We replicated these experiments using the same conditions as 3D
DSNs (150k iterations with Adam/SGD), but observed very similar results
to [175]. Thus, we report numbers from [175].

3.4.2 Datasets

We evaluate quantitatively and qualitatively on two real-world datasets:
OCID [152] and OSD [135], which have 2346 images of semi-automatically
constructed labels and 111 manually labeled images, respectively. OSD is a
small dataset that was manually annotated, so the annotation quality is high.
OCID, which is much larger, uses a semi-automatic process of annotating
the labels. It incrementally builds up the scene by adding one object at a
time, and computes labels by calculating difference in depth. However,
this process is subject to depth sensor noise, so while the majority of the
instance label is accurate, the label boundaries are noisy. Additionally, OCID
contains images with objects on a tabletop, and images with objects on a
floor. Despite our method being trained in synthetic tabletop settings, it
generalizes to floor settings as well.

Lastly, we use the Google Open Images Dataset v5 [12] (OID) in an exper-
iment to test the Sim-to-Real gap of the RRN. OID contains approximately 9
million “in-the-wild” images with image-level annotations, bounding boxes,
and segmentations. In particular, it contains 2.8 million segmentations for
350 object classes. We filtered the 350 object object classes down to 156
classes that could potentially be on a tabletop, resulting in roughly 220k
instance masks on real RGB images.

65

3.4.3 Metrics

We use the precision/recall/F-measure (P/R/F) metrics as defined in [40].
These metrics promote methods that segment the desired objects and pe-
nalize methods that provide false positives. Specifically, the F-measure is
computed between all pairs of predicted and ground truth masks, which
are matched via the Hungarian method. Given a matching, the final P/R/F
is computed by

P =

∑
i |si ∩ g(si)|∑

i |si|
, R =

∑
i |si ∩ g(si)|∑

j |gj |
, F =

2PR

P +R
,

where si denotes the set of pixels belonging to predicted object i, g(si) is the
set of pixels of the matched ground truth object of si, and gj is the set of
pixels for ground truth object j. We denote this as Overlap P/R/F. See [40]
for more details.

Segmentations with sharp or fuzzy boundaries will obtain similar Over-
lap P/R/F scores, which will not reflect the efficacy of the RRN. To remedy
this, we introduce a Boundary P/R/F measure to complement the Over-
lap P/R/F. Using the same Hungarian matching used to compute Overlap
P/R/F, we compute Boundary P/R/F by

P =

∑
i |si ∩D [g(si)]|∑

i |si|
, R =

∑
i |D [si] ∩ g(si)|∑

j |gj |
,

where we overload notation and denote si, gj to be the set of pixels belonging
to the boundaries of predicted object i and ground truth object j, respectively.
D[·] denotes the dilation operation, which allows for some slack in the
prediction. Note that these metrics are sensitive to the amount of allowed
slack. However, without this, these numbers can look deceivingly low as
no slack requires exact pixel boundary matching which can lead to issues
with either noisy manual annotations or noisy semi-automatic annotations
[152]. For the dilation operation, we use a circular kernel where the diameter
of the kernel depends on the size of the image. Roughly, this metric is a
combination of the F-measure in [120] along with the Overlap P/R/F as

66

Method
Overlap Boundary

P R F P R F
GCUT [51] 21.5 51.5 25.7 10.2 46.8 15.7
SCUT [121] 45.7 72.5 43.7 43.1 65.1 42.6
LCCP [35] 58.4 89.1 63.8 53.6 82.6 60.2
V4R [126] 65.3 81.4 69.5 62.5 81.4 66.6

UOIS-Net-2D 88.8 81.7 84.1 83.0 67.2 73.3
UOIS-Net-3D 88.2 88.0 87.9 81.1 74.3 77.3

Table 3.1: Comparison with baselines on ARID20 and YCB10 subsets of
OCID [152]. Red indicates the best performance.

defined in [40].
We report all P/R/F measures in the range [0, 100] (P/R/F ×100).

3.4.4 2D Quantitative Results

In this section, we quantitatively compare our UOIS-Net-2D to baselines
and state-of-the-art algorithms. In all experiments with UOIS-Net-2D, we
use an RRN trained on TOD, except when explicitly stated otherwise.

Comparison to baselines. We compare to baselines shown in [152],
which include GCUT [51], SCUT [121], LCCP [35], and V4R [126]. In [152],
these methods were only evaluated on the ARID20 and YCB10 subsets of
OCID, so we compare our results these subsets as well. These baselines are
designed to provide over-segmentations (i.e., they segment the whole scene
instead of just the objects of interest). To allow a more fair comparison, we
set all predicted masks smaller than 500 pixels to background, and set the
largest mask to table label (which is not considered in our metrics). Results
are shown in Table 3.1. Because the baselines aim to over-segment the scene,
the precision is in general low while the recall is high. LCCP is designed to
segment convex objects (most objects in OCID are convex), but its predicted
boundaries are noisy due to utilizing depth only. Recall that OCID labels
suffer from depth sensor noise, which explains why LCCP’s boundary
recall is quite high (see Section 3.4.5 for a visual example). Both SCUT
and V4R utilize models trained on real data, putting them at an advantage

67

Method Input
OCID [152] OSD [135]

Overlap Boundary Overlap Boundary
P R F P R F P R F P R F

Mask R-CNN [63] RGB 66.0 34.0 36.6 58.2 25.8 29.0 63.7 43.1 46.0 46.7 26.3 29.5
Mask R-CNN [63] Depth 82.7 78.9 79.9 79.4 67.7 71.9 73.8 72.9 72.2 49.6 40.3 43.1
Mask R-CNN [63] RGB-D 79.2 78.6 78.0 73.6 67.2 69.2 74.0 74.6 74.1 57.3 52.1 53.8
PointGroup [72] RGB-D 81.6 80.1 80.1 75.4 70.4 71.7 79.5 78.2 78.8 67.0 65.0 65.4

UOIS-Net-2D DSN: RGB-D 84.2 57.6 62.2 72.9 44.5 49.9 72.2 63.7 66.1 58.5 43.4 48.4
UOIS-Net-2D DSN: Depth 88.3 78.9 81.7 82.0 65.9 71.4 80.7 80.5 79.9 66.0 67.1 65.6
UOIS-Net-3D DSN: Depth 86.5 86.6 86.4 80.0 73.4 76.2 85.7 82.5 83.3 75.7 68.9 71.2

Table 3.2: Evaluation of our methods against SOTA methods trained on
different input modes. Red indicates the best performance.

with respect to UOIS-Net-2D. V4R was trained on OSD [135] which has
an extremely similar data distribution to OCID, giving V4R a substantial
advantage and making it the strongest baseline in [152]. However, our
UOIS-Net-2D (line 5 in Table 3.1), despite never having seen any real data,
significantly outperforms these baselines on F-measure.

Comparison to SOTA. In Table 3.2, we compare UOIS-Net-2D to two
SOTA methods, Mask R-CNN [63] and PointGroup [72], both trained on
RGB-D from TOD. While Mask R-CNN is a general method for detection that
can be applied to different types of input modes, the more recent PointGroup
requires point clouds and utilizes a sparse convolutional backbone. We
see that UOIS-Net-2D (line 6) outperforms Mask R-CNN (line 3) on OSD
and slightly on OCID. On the other hand, PointGroup (line 4) provides
comparable performance to UOIS-Net-2D. Note, however, that PointGroup
reasons in 3D with center voting while UOIS-Net-2D does not. In that sense,
Mask R-CNN is more similar to UOIS-Net-2D.

Note that the performance of UOIS-Net-2D is similar to Mask R-CNN
and PointGroup on OCID in terms of boundary F-measure. This result is
misleading: it turns out that using the RRN to refine the initial masks pro-
duced by UOIS-Net results in degraded quantitative performance on OCID,
while the qualitative results are better. This is due to the semi-automatic
labeling procedure in OCID that leads to ground truth segmentation la-
bels aligning with noise from the depth camera [152]. An illustration of
this can be found in the first example (row) of Figure 3.4. Table 3.3 shows
the performance of UOIS-Net without applying RRN (DSN and IMP only)

68

Method
OCID [152] OSD [135]

Overlap Boundary Overlap Boundary
P R F P R F P R F P R F

UOIS-Net-2D 90.9 79.4 83.0 85.2 70.8 75.7 80.3 81.1 80.1 53.4 53.3 52.8
UOIS-Net-3D 88.8 89.2 88.8 86.9 80.9 83.5 85.7 82.1 83.0 74.3 67.5 70.0

Table 3.3: Performance of UOIS-Net without RRN.

on OCID and OSD. This method utilizes only depth and predicts segmen-
tation boundaries that are aligned with the sensor noise. In this setting,
UOIS-Net-2D outperforms both SOTA methods, with a significant gain
in boundary F-measure and a minor gain in overlap F-measure. In fact,
UOIS-Net-3D also gains performance on OCID when removing the RRN
which further demonstrates the issue with OCID labels.. On the other hand,
OSD has manually annotated labels and this issue is not present, and our
methods’ performances deteriorate in the absence of the RRN. In particular,
UOIS-Net-2D drops almost 20% relatively without it.

Effect of input mode. To evaluate how different input modes affect
results, we train Mask R-CNN on RGB, depth, and RGB-D and compare it
to UOIS-Net-2D in Table 3.2. Training Mask R-CNN on synthetic RGB only
poorly generalizes from Sim-to-Real. Training on depth drastically boosts
this generalization, which is in agreement with [103, 37, 141]. When training
on RGB-D, we posit that Mask R-CNN relies heavily on depth as adding
RGB to depth results in little change. However, UOIS-Net-2D exploits
RGB and depth separately, leading to better results on OSD while being
trained on the exact same synthetic dataset. Furthermore, when our DSN is
trained directly on RGB-D (line 4, Table 3.2), we see a drop in performance,
suggesting that training directly on (non-photorealistic) RGB is not the best
way of utilizing synthetic data.

Degradation of training on non-photorealistic simulated RGB. To quan-
tify how much non-photorealistic RGB degrades performance, we train an
RRN on real data. This serves as an approximate upper bound on how
well the synthetically-trained RRN can perform. We use the instance masks
from OID [12] and show results in Table 3.4. Both models share the same
DSN and IMP. The Overlap measures are roughly the same, while the RRN

69

DSN
reasoning

RRN
training

data

OCID [152] OSD [135]
Overlap Boundary Overlap Boundary

P R F P R F P R F P R F

2D
TOD 88.3 78.9 81.7 82.0 65.9 71.4 80.7 80.5 79.9 66.0 67.1 65.6
OID 87.9 79.6 81.7 84.0 69.1 74.1 81.2 83.3 81.7 69.8 73.7 70.8

3D
TOD 86.5 86.6 86.4 80.0 73.4 76.2 85.7 82.5 83.3 75.7 68.9 71.2
OID 86.0 88.2 86.9 83.1 77.6 79.9 86.0 85.1 84.8 81.0 75.3 77.3

Table 3.4: Comparison of RRN when training on TOD and real images from
Google OID [12].

DSN
IMP

RRN
Boundary

O/C CCC P R F
3 35.0 58.5 43.4
3 3 36.0 48.1 39.6
3 3 49.2 55.3 51.7
3 3 3 59.0 64.1 60.7
3 3 3 53.4 53.3 52.8
3 3 3 3 66.0 67.1 65.6

Method Input RRN
Boundary

P R F
Mask R-CNN RGB 46.7 26.3 29.5
Mask R-CNN RGB 3 52.8 28.8 33.3
Mask R-CNN Depth 49.6 40.3 43.1
Mask R-CNN Depth 3 69.0 55.2 59.8
Mask R-CNN RGB-D 57.3 52.1 53.8
Mask R-CNN RGB-D 3 63.4 57.0 59.2

Table 3.5: (left) Ablation experiments for UOIS-Net-2D on OSD [135]. O/C
denotes the Open/Close morphological transform, while CCC denotes
Closest Connected Component. (right) Refining Mask R-CNN results with
RRN (trained on TOD) on OSD.

trained on OID has slightly better performance on the Boundary measures.
This suggests that while there is still a gap, our method is surprisingly not
too far off, considering that we train with non-photorealistic synthetic RGB.
We conclude that mask refinement with RGB is an easier task to transfer
from Sim-to-Real than directly segmenting from RGB.

Ablation studies. We report ablation studies on OSD to evaluate each
component of our proposed method in Table 3.5 (left). We omit the Overlap
P/R/F results since they follow similar trends to Boundary P/R/F. Running
the RRN on the raw masks output by DSN without the IMP module actually
hurts performance as the RRN cannot refine such noisy masks. Adding the
open/close morphological transform and/or the closest connect component
results in much stronger results, showing that the IMP is crucial in robustify-
ing our proposed method. In these settings, applying the RRN significantly
boosts Boundary P/R/F. In fact, Table 3.5 (right) shows that applying the
RRN to the Mask R-CNN results effectively boosts the Boundary P/R/F
for all input modes on OSD, showing the efficacy of the RRN despite be-

70

GCUT LCCPSCUT V4R Mask	RCNN UOIS-Net-2D GTPointGroup

Figure 3.4: Comparison of UOIS-Net-2D with baselines, Mask R-CNN, and
PointGroup on OCID [152]. LCCP and V4R operate on depth only, thus are
subject to noise from depth sensors. However, this is also true for the ground
truth segmentation produced by OCID [152]. Our proposed UOIS-Net-2D
provides sharp and accurate masks in comparison to all of the baselines.

ing directly trained on non-photorealistic RGB. Note that even with this
refinement, the Mask R-CNN results are outperformed by our method.

3.4.5 2D Qualitative Results

In this subsection, we qualitatively compare UOIS-Net-2D to the baselines
given in [152] along with the state-of-the-art baseline Mask R-CNN. We also
visually demonstrate the efficacy of our RRN, showcasing its capability for
refinement. Finally, we investigate the robustness of the algorithm, along
with common failure modes.

Comparison to baselines and SOTA. First, we show qualitative results
on OCID of baseline methods, Mask R-CNN (trained on RGB-D), Point-
Group, and UOIS-Net-2D in Figure 3.4. It is clear that the baseline methods
suffer from over-segmentation issues; they segment the table and back-
ground into multiple pieces. This is especially the case for methods that
utilize RGB as an input (GCUT and SCUT); the objects are often over-
segmented as well. In example (row) 1 of Figure 3.4, the ground truth
label for the keyboard is riddled with holes. Methods that operate only

71

Figure 3.5: Mask refinements with RRN: before (top) refinement (after IMP),
and after refinement (bottom).

on depth (LCCP and V4R) mirror these noisy boundaries, leading to in-
flated boundary P/R/F measures. Despite this, our quantitative results still
outperform these baselines.

The main failure mode for Mask R-CNN is that it tends to undersegment
objects. This is the typical failure mode of top-down instance segmentation
algorithms in clutter. A close inspection of Figure 3.4 shows that Mask
R-CNN frequently segments multiple objects as one. Examples 1 and 4
show undersegmentation of many neighboring small objects, and example
2 shows undersegmentation of larger objects. Since PointGroup requires
point clouds, it is susceptible to degradation from depth sensor noise as
well. Additionally, some masks (e.g. example 4) can be quite noisy, which
we hypothesize is due to the rudimentary breadth-first search clustering
algorithm.

On the other hand, our method utilizes depth and RGB separately to
provide sharp and accurate masks. Because UOIS-Net-2D leverages RGB
after depth, it can fix the issues with depth sensors shown in example 1.
Additionally, our method can segment complicated structures such as stacks
(example 2 and 4) and cluttered environments (example 4).

RRN Refinements. In Figure 3.5, we qualitatively show the effect of the
RRN. The top row shows the masks before refinement (after IMP), and the
bottom row shows the refined masks. These images were taken in our lab
with an Intel RealSense D435 RGB-D camera to demonstrate the robustness
of our method to camera viewpoint variations and distracting backgrounds,

72

RGB Depth Foreground Center
Directions

Initial	Masks
(before	IMP)

Initial	Masks
(after	IMP) Refined	Masks Ground	Truth

Ro
bu

st
	E
xa
m
pl
es

Fa
ilu
re
	M

od
es

Figure 3.6: Outputs (and intermediate) of UOIS-Net-2D are visualized. We
demonstrate the robustness of the Hough voting layer and the IMP (top)
and show common failure modes (bottom). See text for details. Best viewed
in color on a computer screen.

as OCID and OSD have relatively simple backgrounds. Due to noise in the
depth sensor, it is impossible to get sharp and accurate predictions from
depth alone without using RGB. Our RRN can provide sharp masks even
when the boundaries of objects are occluding other objects (examples 2 and
5). Additionally, it is able to fix squiggly mask boundaries and patch up
large missing chunks in the initial mask (example 6).

Robustness. In Figure 3.6 (top), we demonstrate how our method is
robust to errors in the pipeline by visualizing the inputs, outputs, and inter-
mediate outputs of the entire system. In row 1, the DSN produces a false
positive foreground region in the top right of the image. However, there is
not enough evidence in the center directions (not enough discretized angles
are present), thus the Hough voting layer suppresses this potential object.
The IMP further removes small masks components that are disconnected
from the largest mask. In row 2, there are many spurious center direction
predictions, however these are not considered as potential object centers by

73

the Hough voting layer because they are not detected by the foreground
mask. Additionally, one can see the many holes and spurious mask compo-
nents in column 5. As seen in the ablation studies in Section 3.4.4, applying
the RRN here (without the IMP) actually degrades the performance. The
IMP cleans this image, making the refinement task easier for the RRN.

Failure Modes. We show some failure modes of our DSN in Figure
3.6 (bottom) on the OSD dataset. In row 1, we see an undetected object
(green book) because the center of the mask is occluded. In the center
direction image, there is no convergent point for this object which would
be considered as the object center with all discretized angles pointing to it.
This is the main limitation of the 2D center voting procedure. In row 2, there
is a false positive region detected by the DSN in the top right corner, which
cannot be undone by the RRN. Lastly, in row 3, the DSN cannot correctly
segment an object whose mask has been split in two by an occluding object.

Our RRN also has some common failure modes. Column 4 in Figure 3.5
shows that the RRN can fail when the object has a complex texture. Column
6 demonstrates that if there is not enough padding to the initial mask to see
the entire object, the RRN cannot segment the entire object (lego block). In
column 2, the RRN has a tough time fixing the segmentation mask when the
DSN has incorrectly undersegmented a few objects together (the two cups
to the left of the eraser).

3.4.6 3D Quantitative Results

In this section, we quantitatively compare UOIS-Net-3D to all of the previous
baselines and our proposed UOIS-Net-2D, showing superior performance
across all datasets and experiments.

Comparison to baselines. We compare the full UOIS-Net-3D with an
RRN trained on TOD to all previous baselines from [152] and our UOIS-
Net-2D in Table 3.1. Discussion of all baselines and UOIS-Net-2D is given
in Section 3.4.4. Compared to UOIS-Net-2D, the 3D version substantially
increases the recall in both the overlap and boundary metrics, leading to
a relative increase of 4.5% in overlap F-measure and 5.5% in boundary F-

74

measures. In fact, UOIS-Net-3D, despite no convexity assumptions, gets
quite close to the overlap recall of LCCP, which segments objects based on
convexity. In the OCID dataset, the majority of objects are convex, thus this
method performs quite well. Our method, without any such assumption
and trained only on simulated data, achieves similar recall while focusing all
the segmentation effort on the relevant tabletop objects, resulting in much
stronger performance in precision and F-measure. The boundary recall
also improves with respect to UOIS-Net-2D, but does not reach the quality
of LCCP and V4R, because of the noisy ground truth object boundaries
provided by the semi-automatic annotation capture by OCID [152] (see
Section 3.4.5 for discussion and Figure 3.4 for visual examples). Note that
only the DSN structure is changed when moving from 2D to 3D, thus this
extra recall is mainly due to the 3D center voting structure and better initial
masks.

Comparison to SOTA. In Table 3.2, we show comparisons of UOIS-Net-
3D with SOTA methods Mask R-CNN [63] and PointGroup [72], and the
previous UOIS-Net-2D on OCID and OSD. Again, the trend of performance
increase from UOIS-Net-2D is similar to before, where a significant increase
in recall leads to a boost in F-measure. On OCID, UOIS-Net-3D receives a
relative increase of 5.8% in overlap F-measure and a 6.7% in boundary F-
measure. Compared to the best performing Mask R-CNN, our performance
provides a relative increase of 8.1% on overlap F-measure and 6.0% on
boundary F-measure, while being trained on the exact same dataset (TOD).
Additionally, we outperform PointGroup by 7.9% and 6.3% on overlap and
boundary F-measures, respectively. Note that UOIS-Net-3D performs center
voting in a similar fashion to PointGroup, however we believe our novel loss
functions target cluttered environments more effectively. On OSD overlap
F-measure, we provide a relative increase of 4.3% over UOIS-Net-2D, 12.4%
over Mask R-CNN, and 5.7% over PointGroup. For boundary F-measure,
we show 8.5% over UOIS-Net-2D, 32.3% over Mask R-CNN, and 8.9% over
PointGroup. Note that while our recall jumps modestly in comparison to
UOIS-Net-2D, the precision increase is more sizable.

RRN ablation. We refer readers to Table 3.4 to show the full power of

75

Loss Functions
OCID [152] OSD [135]

Overlap Boundary Overlap Boundary
`fg `co `cl `sep P R F P R F P R F P R F
3 3 77.9 79.8 78.6 71.2 68.0 68.9 79.4 80.1 79.8 74.5 66.5 69.8
3 3 3 77.0 81.3 78.7 71.9 68.2 69.0 72.8 74.9 72.8 67.2 61.0 62.2
3 3 3 85.5 87.9 86.5 80.9 77.8 78.8 84.0 85.1 84.5 75.0 74.9 74.6
3 3 3 3 86.0 88.2 86.9 83.1 77.6 79.9 86.0 85.1 84.8 81.0 75.3 77.3

Table 3.6: Ablation study over loss functions of UOIS-Net-3D. Our novel
separation loss `sep is crucial to obtaining state-of-the-art performance. Note
that we are using an RRN trained on real data.

our method. When using an RRN trained on OID [12], our full UOIS-Net-
3D further increases the boundary F-measures, leading to 79.9 points on
OCID and 77.3 points on OSD, which is 7.8% and 9.2% higher than the full
UOIS-Net-2D on OCID and OSD, respectively. In the rest of this section, all
UOIS-Net-3D’s will use an RRN trained on OID in order to show the full
performance of our method.

Loss function ablation. At the minimum, we require `fg and `co to train
UOIS-Net-3D. In Table 3.6, UOIS-Net-3D actually performs poorer than
UOIS-Net-2D (see Table 3.4) with these two losses only. When adding the
cluster loss `cl, we get roughly the same performance on OCID. Our intuition
is that this loss encourages the same behavior as `co, namely that the points
should cluster near the ground truth object center, thus it doesn’t introduce
anything new. However, adding this loss significantly hurts performance
on OSD; we posit that this result is noisy due to the small size of OSD. In
the third row, we show that adding our novel `sep loss relatively boosts
overlap F-measure by 10.1% and boundary F-measure by 14.4% compared
to the base model (λfg`fg + λco`co), demonstrating it is crucial for obtaining
good performance. `sep pushes center votes away from center votes of other
objects in order to make the post-processing GMS clustering easier. Note
that the center votes don’t necessarily need to be close to the ground truth
object centers; they simply need to be easily clustered, and this loss allows
for that. This property is crucial to getting strong performance in clutter as
the numbers demonstrate. We will also visually illustrate this phenomena
in Section 3.4.7. Lastly, since the object clusters are not necessarily near the

76

DSN
reasoning

ESP
Module

OCID [152] OSD [135]
Overlap Boundary Overlap Boundary

P R F P R F P R F P R F

2D
7 87.9 79.6 81.7 84.0 69.1 74.1 81.2 83.3 81.7 69.8 73.7 70.8
3 87.6 85.0 85.7 84.4 73.4 77.8 84.6 82.3 82.8 75.5 71.6 72.4

3D
7 83.9 85.6 84.4 79.1 76.4 77.2 85.1 85.7 85.1 78.9 76.5 77.3
3 86.0 88.2 86.9 83.1 77.6 79.9 86.0 85.1 84.8 81.0 75.3 77.3

Table 3.7: Ablation study to test the significance of a wider receptive field.
Using the ESP module [106] in the DSN architecture improves performance
for both UOIS-Net-2D and UOIS-Net-3D. Note that we are using an RRN
trained on real data.

ground truth object centers, `cl now encourages something that `co does not:
it encourages that the center votes are tightly packed wherever they are
placed, further easing the job of the post-processing GMS clustering. In line
4 we see it provides some extra performance gain.

ESP module ablation. We evaluate the significance of using the ESP
module [106] to obtain a higher receptive field by testing both UOIS-Net-3D
and UOIS-Net-2D (which normally does not include the ESP module) with
and without the ESP modules embedded into the DSN in Table 3.7. We
immediately see that obtaining a higher receptive field is beneficial to the
performance. For UOIS-Net-3D, we see relative gains on OCID of 3.0% and
3.5% on overlap and boundary F-measures, respectively. On OSD, we see
similar performance. For UOIS-Net-2D, we see a large relative gain on OCID
of 4.9% and 5% on overlap and boundary F-measures, respectively. Note
that the DSN with ESP modules has slightly fewer parameters than without
them, thus these experiments highlight the usefulness of a higher receptive
field.

τ ablation. In the top row of Figure 3.7, we test the sensitivity of our
model to the settings of τ over [5, 10, 15, 20, 25], which is used in `sep. We
visualize both overlap and boundary P/R/F measures. Note that as τ is
essentially a multiplicative factor on the Euclidean distance in Eq. (3.4);
thus, as τ becomes larger, the Euclidean distance becomes more inflated and
objects do not need to be pushed as far in order to minimize `sep. It is clear
to see Figure 3.7 that all metrics increases as τ increases, and they plateau

77

5 10 15 20 25

70

75

80

85

5 10 15 20 25

0.01 0.02 0.03 0.04 0.05

60

65

70

75

80

85

0.01 0.02 0.03 0.04 0.05

overlap P
overlap R
overlap F
boundary P
boundary R
boundary F

OCID OSD

Figure 3.7: Ablation study to test the sensitivity of UOIS-Net-3D with respect
to τ, σ. Best viewed by zooming in on a computer.

after τ hits a high enough value, in this case 15. This suggests that we only
need a small level of encouragement to push the object centers away from
each other in order to get strong performance, and that setting τ too low can
degrade performance, potentially by making `sep too difficult to minimize.

σ ablation. In the bottom row of Figure 3.7, we test the sensitivity of
UOIS-Net-3D to σ over [0.01, 0.02, 0.03, 0.04, 0.05], which is used in `cl. The
value of σ determines how tightly packed the center votes of an object need
to be in order to minimize `cl. Additionally, it determines how much spread
the center votes can have and still be clustered together during the post-
processing GMS clustering step. When σ is too small, the DSN typically
oversegments the objects. On the other hand, when σ is too large, center
votes from multiple objects get clustered together and undersegmentation
occurs. Thus, σ should be chosen to reflect the level of clutter in the scenes,
i.e. how close the objects are. Our ablation study hints at this idea: the
bottom row of Figure 3.7 that σ = 0.02 works the best for both OCID [152]

78

RG
B

UO
IS
-N
et
-2
D

UO
IS
-N
et
-3
D

GT

Figure 3.8: Qualitative comparison of UOIS-Net-2D to UOIS-Net-3D on
OCID.

and OSD [135], as they are similar in distribution. In fact, the trends of the
graph in both datasets are also similar. Note that we tried learning σ as a
parameter of the network, however these experiments did not work well.

3.4.7 3D Qualitative Results

In this section, we qualitatively investigate the efficacy of UOIS-Net-3D.
We compare it to UOIS-Net-2D to show how reasoning in 3D can solve the
issues of reasoning in 2D pixel space, show the importance of using `sep by
visualizing the center votes, and illustrate common failure modes of this
architecture.

2D vs. 3D comparison. In Figure 3.8, we qualitatively compare the
predictions of UOIS-Net-2D and UOIS-Net-3D to understand how reasoning
in 3D can solve the 2D issues mentioned beforehand (in Section 3.4.5).
The first row of Figure 3.6 (bottom) exhibits the 2D issue of false negative
detection when the 2D center of the object is occluded. However, this is
easily corrected when voting for 3D centers, as seen in columns 2 and 5
of Figure 3.8 In columns 1, 3, and 4, we see that UOIS-Net-3D detects and
segments more small, thin objects such as pens and bananas. The 2D Hough
voting procedure typically fails to detect enough discretized directions for
objects with such shape. This issue is ameliorated when reasoning in 3D,

79

R
G
B

w
/o
u
t	
		
		
		
		
		
		
	

` s
e
p

C
e
n
te
r	
V
o
te
s

G
T

w
it
h
		
		
		
		
		

` s
e
p

Figure 3.9: Effect of `sep on center votes. Rows 2 and 3 show the point cloud
(visualized with Open3D [185]) and center votes overlaid on the image,
which are color-coded according to their instance ID. Best viewed in color
and zoomed in.

as there are no approximations made with discretized directions. Lastly, in
columns 3, 4, and 6, we show that the 3D DSN architecture performs better
due to a higher receptive field provided by the ESP modules. In columns 3
and 6, the long keyboards are only half segmented by UOIS-Net-2D, and in
column 4, the binder (behind the cereal box) is also only half segmented.

Center Votes. As shown in Table 3.6, `sep is crucial to ensuring UOIS-
Net-3D has strong performance. We visually examine the reason for this in
Figure 3.9. In the second and third rows, we visualize the point cloud of the
scene with the predicted center votes overlaid on the same image. Both the
point cloud and center votes are color coded with respect to their instance
segmentation masks. In the second row, we show point clouds/center votes
from UOIS-Net-3D without training with `sep, and the third row is the full
model. It is clear to see that when training without `sep, the center votes are
more spread out and messy, which makes the post-processing GMS cluster-
ing more difficult. On the other hand, the full model has much more tightly

80

RGB Depth Foreground Center	Votes
Initial	Masks

(after	IMP)
Refined	Masks Ground	Truth

Figure 3.10: Common failure modes of UOIS-Net-3D. See text for details.
Best viewed in color and zoomed in.

packed and separated center votes, which leads to better performance. Look-
ing at example (column) 5, there are many small objects such as fruits and
bananas which are close to each other in spatial proximity. UOIS-Net-3D
trained without `sep shows that the center votes are mostly jumbled together,
while the full model nicely separates the center votes which leads to almost
perfect segmentation. Note that the center votes do not need to be at the
center of the object, as long as they can be clustered correctly. In the upper
right of example 2, the cylinder and the bowl have very close 3D centers.
The 3D DSN predicts the center votes in a way that pushes them apart to
ease the post-processing clustering and allows (the full) UOIS-Net-3D to
correctly segment these objects.

Failure modes. In Figure 3.10, we demonstrate common failure modes
of UOIS-Net-3D. Row 1 shows that when objects are close together, they may
under-segmented into a single segment. The center votes shows that the
three small fruits have center votes that are too close to separate in the post-
processing clustering step. Another case of under-segmentation is shown in
row 3, where multiple objects (cereal boxes) with flat surfaces are lined up
such that the depth map shows a large flat surface. It is difficult to correctly

81

separate these boxes from depth alone; appearance is key in providing the
correct segmentation in such situations. Row 4 shows that highly nonconvex
objects such as power drills can be over-segmented into pieces. The center
votes image clearly shows that the DSN believes this object to be two objects.
Lastly, row 2 indicates that the 2D issue of attempting to segment a mask
that is split into multiple pieces by an occluding object is still present when
reasoning in 3D.

3.4.8 Quantifying Generalization from Sim to Real

Method
Overlap Boundary

P R F P R F

UOIS-Net-2D 94.3 89.0 90.9 89.7 80.6 84.1
UOIS-Net-3D 92.1 92.1 91.9 85.0 87.1 85.5
Mask R-CNN 95.4 95.2 95.1 92.3 90.0 90.9
PointGroup 97.7 95.1 96.1 93.3 89.8 91.1

Table 3.8: Performance on TOD test set (20k images).

In order to quantify generalization from simulation to the real-world, we
show performance of our methods and SOTA methods Mask R-CNN and
PointGroup on the TOD test set. This dataset of 20k images was generated
using instances that are not present in the training set. In Table 3.8, we show
that both Mask R-CNN and PointGroup outperform UOIS-Net on all metrics
on this test set. However, as seen in Table 3.2, UOIS-Net outperforms Mask
R-CNN and PointGroup on real-world data, indicating that our methods
handle the distribution shift better, which is ultimately what we care about.

3.4.9 Application in Grasping Unknown Objects

We use our model to demonstrate manipulation of unknown objects in
a cluttered environment using a Franka robot with panda gripper and
wrist-mounted RGB-D camera. The task is to collect objects from a table
and put them in a bin. Object instances are segmented using our method

82

Figure 3.11: Visualization of clearing table using our instance segmentation
and 6-DOF GraspNet [109].

and the point cloud of the closest object to the camera is fed to 6-DOF
GraspNet [109, 110] to generate diverse grasps, with other objects considered
obstacles. Other objects are represented as obstacles by sampling fixed
number of points using farthest point sampling from their corresponding
point cloud. The grasp that has the maximum score and has a feasible path is
chosen to execute. Figure 3.11 shows the instance segmentation at different
stages of the task and also the execution of the robot grasps. Video of the
experiments can be found at the project website2. Our method segments
the objects correctly most of the time but fails sometimes, such as the over-
segmentation of the drill in the scene. Our method considers the top of the
drill as one object and the handle as an obstacle. This is because the object
is highly nonconvex as discussed in the previous section. We conducted
the experiment to collect 51 objects from 9 different scenes. Each object is
considered to be successfully grasped if the robot can pick it up in maximum
2 attempts. Otherwise, we count that object as failure case and remove it
from the scene manually and proceed to other objects. In our trials, the robot
successfully grasped 41/51 objects (80.3% success rate). The failures stem

2https://rse-lab.cs.washington.edu/projects/
unseen-object-instance-segmentation/

83

https://rse-lab.cs.washington.edu/projects/unseen-object-instance-segmentation/
https://rse-lab.cs.washington.edu/projects/unseen-object-instance-segmentation/

from either imperfections in segmentation or inaccurate generated grasps.
Note that neither our method nor 6-DOF GraspNet [109] are trained on real
data.

3.5 Discussion

In this chapter, we proposed a deep network, UOIS-Net, that separately
leverages RGB and depth to provide sharp and accurate masks for unseen
object instance segmentation. Our two-stage framework produces rough
initial masks using only depth by regressing center votes in either 2D or 3D,
then refines those masks with RGB. Surprisingly, our RRN can be trained on
non-photorealistic RGB and generalize quite well to real world images. We
demonstrated the efficacy of our approach on multiple tabletop environment
datasets and showed that our model can provide strong results for unseen
object instance segmentation.

In parallel to our work presented in this chapter and in [178], we also
worked on an alternate solution using a different network architecture.
We introduced Unseen Clustering Network (UCN) in [173]. UCN adopts
a standard encoder-decoder network architecture, much like UOIS-Net,
and trains directly on the non-photorealistic TOD dataset introduced in
Section 3.3. The key difference with UCN is that it utilizes a contrastive loss
on pixel-dense embeddings. This loss function is almost identical to the one
introduced in Section 2.2.4. UCN trains for a much longer time than UOIS-
Net, and generalizes very well from simulation to the real world without
any tricks, similarly to UOIS-Net. However, UCN directly predicts instance
segmentations from RGB-D, which is in contrast to UOIS-Net which directly
predicts instance segmentations from depth, and refines them with RGB.
UCN gives state-of-the-art performance, and we build on top of the results
in the next chapter.

While the results of UOIS-Net are quite promising, there is still lots of
room for improvement. First, as discussed in Section 3.4.7, in heavily clut-
tered settings, our method tends to under-segment objects together as shown
in example 1 of Figure 3.10. In the RGB image, there are clear delineations

84

of the different objects, whereas the depth may be less so. Perhaps then,
a useful postprocessing step would be able to split the mask along those
object boundaries. Secondly, another shortcoming of UOIS-Net is its absence
of uncertainty. Like many deep learning-based segmentation algorithms,
it produces a single output with a forward pass of the model. We explore
these two threads in the next chapter, where we devise a novel method of
sampling perturbations to initial instance segmentations to produce both
refined instance segmentation masks and uncertainty estimates.

85

Chapter 4

RICE: Refining Instance Masks
in Cluttered Environments
with Graph Neural Networks
This chapter discusses work originally published in Xie et al. [176].

Perception lies at the core of the ability of a robot to function in an un-
structured environment. A critical component of such a perception system
is its capability to solve Unseen Object Instance Segmentation (UOIS), as
it is infeasible to assume all possible objects have been seen in a training
phase. Proper segmentation of these unseen instances can lead a better
understanding of the scene, which can then be exploited by algorithms
such as manipulation [109, 110, 108] and re-arrangement [38]. Additionally,
understanding the object identities is a useful piece of information when
planning to re-arrange objects.

Many methods for UOIS directly predict segments from raw sensory
input such as RGB and/or depth images. Recent methods, including
UOIS-Net introduced in Chapter 3, have shown strong results for this prob-
lem [178, 173, 63, 72]. For example, Xiang et al. [173] showed that training a
network on RGB-D with simulated data and a simple contrastive loss [42]
can demonstrate strong results for this problem. While these methods show

86

Initial

Segmentation Encode Graph Score Graphs

• Split

Sample Perturbations

• Merge

• Delete • Add

Best Graph

Uncertainty

Figure 4.1: High-level overview of RICE. Given an initial segmentation, we
encode it as a segmentation graph, sample perturbations, then score the
resulting segmentation graphs. The highest scoring graph and/or contour
uncertainty is output. Best viewed in color and zoomed in.

promise, they are not perfect and still admit mistakes in cluttered scenes,
which are common in manipulation scenarios. This can hamper downstream
robot tasks that rely on such perception.

A natural thought is that an architecture with relational reasoning can
benefit the predictions. Graph neural networks (GNN) in vision and robotics
have recently become a useful tool for learning relational representations.
Motivated by the success of convolutional neural networks (CNNs) [93],
GNNs were first introduced by [139], and many variants have been proposed
that incorporate properties analogous to CNNs such as locality [82, 59], atten-
tion [164], and residual connections [94, 62]. They have found applications in
many standard computer vision tasks such as image classification [55, 167],
object detection [67], semantic segmentation [97], and question answer-
ing [138]. GNNs have also been used to perform “scene graph generation”,
which requires predicting not just object detections, but also the relations
between the objects [180, 31, 182]. The resulting scene graphs have been
used for applications such as image retrieval [73]. GNNs have also been
used to learn object dynamics, properties, and relations for applications
such as differential physics engines [9, 26]. While relational inductive biases
have shown to be useful for many problems as discussed above, it remains
to be seen whether it can be useful in identifying objects in dense clutter.

In this chapter, we propose a novel method for Refining Instance masks

87

in Cluttered Environments, named RICE. Given an initial instance seg-
mentation of unseen objects, we encode it into a segmentation graph, where
individual masks are encoded as nodes and connected with edges when
they are close in pixel space. Starting from this initial graph, we build a tree
of sampled segmentation graphs by perturbing the leaves in a CEM-style
(Cross Entropy Method) framework, where example perturbations include
splitting and merging. We learn Sampling Operation Networks (SO-Nets)
that sample efficient and smart perturbations that generally lead to better
segmentations. The perturbed segmentation graphs are scored with a graph
neural network, denoted Segmentation Graph Scoring Network (SGS-Net).
Finally, we can return the highest scoring segmentation or compute contour
uncertainties, depending on the application. Figure 4.1 provides a high-level
illustration of our method.

RICE is able to improve the results of existing techniques to deliver
state-of-the-art performance for UOIS. An investigatory analysis reveals
that applying SGS-Net on top of the SO-Nets results in more accurate and
consistent predictions. In particular, we find that SGS-Net learns to rank
segmentation graphs better than SO-Nets alone, which is a supporting
insight as to why it aids performance. Additionally, we provide a proof-of-
concept efficient scene understanding application that utilizes uncertainties
output by RICE to guide a manipulator.

In summary, the main contributions in this chapter are:

• We propose a novel framework that utilizes a new graph-based repre-
sentation of instance segmentation masks in cluttered scenes, where
we learn deep networks capable of suggesting smart perturbations
and scoring of the graphs.

• Our method achieves state-of-the-art results for UOIS when combined
with previous methods.

• We demonstrate that uncertainty outputs from our method can be
used to perform efficient scene understanding.

88

4.1 Method

Our method, RICE, is designed to Refine Instance masks of unseen objects
in Cluttered Environments. Given an initial segmentation mask S ∈ NH×W

of unseen objects, we first encode this as a segmentation graph GS , which
is described in Section 4.1.1. Then, in Section 4.1.2, we build a tree T of
sampled segmentation graphs by perturbing the leaves in a CEM-style [41]
framework. Section 4.1.3 details the sampling operations, which are param-
eterized by our Sampling Operation Networks (SO-Nets). Each candidate
graph (tree node) is scored by a GNN named Segmentation Graph Scoring
Network (SGS-Net), introduced in Section 4.1.4. This process is repeated
until a given budget is depleted (e.g. number of tree nodes). Finally, the
highest scoring graph in T and/or contour uncertainties are returned. Fig-
ure 4.1 provides a high-level illustration of RICE, and pseudocode can be
found in Algorithm 2.

4.1.1 Node Encoder

R
G
B

D
e
p
th

M
a
sk

CNN

CNN

CNN

Figure 4.2: Given an initial instance
segmentation mask (left), our segmen-
tation graph representation encodes
each individual mask as a graph node
(red dots) with a corresponding fea-
ture vector vi (yellow bar) output by
the Node Encoder (right). Edges (blue
lines) connect nearby masks.

Given a single instance mask Si ∈
{0, 1}H×W for instance i, we crop
the RGB image I ∈ RH×W×3,
an organized point cloud D ∈
RH×W×3 (computed by backproject-
ing a depth image with camera in-
trinsics), and the mask Si with some
padding for context. We then re-
size the crops to h × w and feed
these into a multi-stream encoder
network which we denote as the
Node Encoder. This network ap-
plies a separate convolutional neu-
ral network (CNN) to each input,
and then fuses the flattened outputs to provide a feature vector vi for this

89

Algorithm 2 RICE

Require: Initial instance segmentation S, RGB image I , organized point
cloud D.

1: Build GS with NodeEncoder applied to I,D, S
2: Initialize T = {GS}
3: for k ∈ [K] do
4: for G ∈ T .leaves() do
5: for b ∈ [B] do
6: Randomly choose a sampling operation and apply it to G to get

candidate graph G′

7: Apply SGS-Net to obtain sG′ , sG
8: if sG′ > sG then
9: Add G′ to T as a child of G

10: end if
11: if T .exceeds_budget(mn,me) then
12: Return T
13: end if
14: end for
15: end for
16: end for
17: return Highest scoring graph in T and/or contour uncertainties

node. See Figure 4.2 for a visual illustration of the network. Note that we
also encode the background mask as a node in the graph. This gives the
segmentation graph GS = (V,E), where each vi ∈ V corresponds to an
individual instance mask, and nodes are connected with undirected edges
e = (i, j) ∈ E if their set distance is less than a threshold.

4.1.2 Building the Sample Tree

Our sample tree-building procedure operates in a CEM-style fashion. CEM [41]
is an iterative sampling-based optimization algorithm that updates its sam-
pling distribution based on an “elite set” of the top k (or top percentile)
samples. For more details, we refer the reader to [41]. Following this ter-
minology, our elite set consists of the leaves of our sample tree T , each
of which are guaranteed to be better with respect to our proxy objective

90

function, SGS-Net. Then, the sampling distribution is implicitly defined
by the SO-Nets; while we cannot explicitly write out the distribution, we
can certainly sample from it with our sampling operations described in
Section 4.1.3.

Our sample tree T starts off with the root GS . We expand the tree from
the leaves with K expansion iterations. For each expansion iteration, we
iterate through the current leaves of T . For a leaf G, we randomly choose a
sample operation from Section 4.1.3 and apply it to G to obtain candidate
graphG′. We then compare the scores sG, sG′ output by SGS-Net, and addG′

to T as a child ofG if sG′ > sG. Thus, any leaf of T is guaranteed to be at least
as good as the rootGS w.r.t. our proxy objective function SGS-Net. We apply
this procedure B times for G, such that each tree node can have a maximum
of B children. Thus, B is a branching factor. Finally, due to constraints of
limited GPU memory, we exit the process in an anytime fashion whenever
we exceed a budget of maximum graph nodes and/or graph edges (not to
be confused with tree nodes/edges). See the pseudocode in Algorithm 2
and an example of the sample tree-building procedure (Figure 4.3).

Given the fully-expanded sample tree T , we return the highest scoring
graph. Since the process is stochastic, we can also compute uncertainty of the
segmentation graphs. Each leaf is essentially a sampled trajectory of states
(segmentations) and actions (perturbations) from the initial segmentation.
These trajectories may have explored different parts of the state space (e.g.
perturbed different object masks in the scene). We can average the contours
of each leaf graph and compute the standard deviation in order to provide
uncertainty estimates of the object contours.

It is important to note that while we utilize our learned SO-Nets and
SGS-Net to build the sample tree T , they are applied in different manners
(although they are trained on the same dataset). In order to add a candidate
graph to the tree, they must both agree in the sense that the perturbation
must be suggested via an SO-Net and SGS-Net must approve of the can-
didate graph via its score. This redundancy offers a level of robustness,
Section 4.2.5 shows that the combination of these leads to more accurate
performance with lower variance.

91

GT Score: 82.0

SGS-Net Score: 86.5

GT Score: 86.8

SGS-Net Score: 89.7

GT Score: 81.8

SGS-Net Score: 87.1

GT Score: 89.5

SGS-Net Score: 91.2

GT Score: 86.6

SGS-Net Score: 90.1

GT Score: 86.6

SGS-Net Score: 90.0

GT Score: 86.6

SGS-Net Score: 90.0

Split Add

Split Split SplitAdd

Figure 4.3: Example of a sample tree. Ground Truth and SGS-Net scores
are shown, along with the chosen sampling operations. In this example,
all leaves improve upon the initial segmentation graph, with the highest
ranking graph also being the closest to the ground truth segmentation. Very
similar splits and adds are investigated in the leaf trajectories.

4.1.3 Sampling Operations

We consider four sampling operations: 1) splitting, 2) merging, 3) deleting,
and 4) adding. However, randomly performing these operations leads
to inefficient samples which wastes computation time and memory. For
example, it is not clear how to split or add an instance mask randomly such
that it may potentially result in a better segmentation. Thus, we introduce
two networks for these four operations, SplitNet and DeleteNet, which
comprise our SO-Nets. They are learned to suggest smart perturbations to
bias the sampling towards better graphs, lowering the amount of samples
needed in order to favorably refine the segmentation. Examples of each

92

(a) Split (b) Merge

(c) Delete (d) Add

Figure 4.4: We show real-world examples of the sampling operations and
how they can refine the original segmentation. Best viewed in color on a
computer screen and zoomed in.

operation can be found in Figure 4.4.

Split It is not clear how to randomly split a mask such that it provides an
effective split. For example, a naive thing to do is to sample a straight line
to split the mask, however in many cases this will not result in a reasonable
split (see Figure 4.4a for an example). Thus, we propose to learn a deep
network denoted SplitNet to handle this. SplitNet takes the output of the
Node Encoder (before flattening), fuses them with concatenation followed
by a convolution, then passes them through a single decoder with skip
connections. Essentially it is a multi-stream encoder-decoder U-Net [136]
architecture, much like Y-Net [174], except that it has three streams for RGB,
depth, and the mask. The output of SplitNet is a pixel-dense probability

93

Algorithm 3 Sampling a Split

Require: Segmentation mask S ∈ {0, 1}h×w, SplitNet output p ∈ [0, 1]h×w,
boundary threshold ν.

1: Compute contour of S.
2: Threshold p by ν, and compute the connected components. Create an

image p̃ ∈ Zh×w where p̃i is the size (in pixels) of the component at pi
for pixel i.

3: Compute contour probabilities for each contour pixel by weighted aver-
age of p̃ with Gaussian weights.

4: Sample start and end points on contour from contour probabilities.
5: Compute highest probability path from start to end through p, resulting

in trajectory τ = {(ut, vt)}Lt=1.
6: Compute score sτ = 1

Li

∑
t pi[ut, vt].

7: return τ, sτ

map pi ∈ [0, 1]h×w of split-able object boundaries. To sample a split for
instance mask Si, we first sample two end points on the contour of the
original mask Si, and calculate the highest probability path from the end
points that travels through pi, resulting in a trajectory τ = {(ut, vt)}Lit=1 of
length Li. We score the split with sτ = 1

Li

∑
t pi[ut, vt] ∈ R, which is the

average probability along the sampled path. Pseudocode for this operation
can be found in Algorithm 3.

Merge We exploit the fact that merging is the opposite of splitting and
adapt SplitNet for this operation. For each pair (i, j) of neighboring masks,
we take their union Sij and pass it through SplitNet to get pij . Note that we
do not consider merging disjoint masks that may belong to the same instance,
which is a limitation of this work. To compute the merge score mij , we first
compute the union of the boundaries of Si and Sj , denoted Bij ∈ {0, 1}h×w.
Then, we calculate the merge score as mij = 1− (pij �Bij/(1ᵀpij1)) where
� is element-wise multiplication, 1 is a vector of ones. This is essentially
a weighted average of Bij with weights pij .This score indicates how likely
SplitNet thinks Si and Sj correspond to different objects. Figure 4.4b shows
an ideal merge operation.

94

Delete We design a network, DeleteNet, to provide delete scores di ∈ R
for every instance (graph node) i. This network is also built on top of the
Node Encoder: it computes the difference vi − vbg, where vbg is the feature
vector for the background node output by the Node Encoder. This difference
is then provided as input to a multi-layer perceptron (MLP) which outputs a
scalar di. See Figure 4.4c for an example of how DeleteNet can help remove
false positives from the segmentation.

Add Similarly to merging, we can exploit the fact that adding is the oppo-
site of deleting. Given a candidate mask SN+1 to add to the graph, we can
use DeleteNet to compute its delete score dN+1. If dN+1 is below a threshold,
we successfully add the mask to the graph. However, the question remains
of how to generate such candidate masks. Given an external foreground
mask F ∈ {0, 1}H×W (provided by UOIS-Net-3D [178]), we run connected
components on F \ {∪iSi}, and use the discovered components as potential
new masks. A successful addition operation can be seen in Figure 4.4d.

To summarize, we characterize four sampling operations, which use two net-
works, SplitNet and DeleteNet, which we denote as our Sampling Operation
Networks (SO-Nets).

4.1.4 Segmentation Graph Scoring Network

While our sample operations provide efficient samples that typically lead
to better segmentation graphs, they can also suggest samples that worsen
the segmentation. Thus, we learn SGS-Net which acts as a proxy for the
objective function in the CEM framework. Our proposed SGS-Net learns
to score a segmentation graph by considering the fused feature vectors vi
in context of their neighboring graph nodes (masks). We posit that this
context will aid SGS-Net in predicting whether the perturbations improve
the segmentation. For example, it can potentially learn to recognize common
object configurations from the training set, and score such configurations
higher.

95

sG 2 R. . .Node
Encoder

Input Graph Residual GN Layer Residual GN LayerInitial Node Features

Output
Layer

Figure 4.5: A high-level illustration of our Segmentation Graph Scoring
Network (SGS-Net). It is composed of a Node Encoder (see Figure 4.2),
multiple Residual GraphNet Layers, and an output layer. We borrowed
elements from Figure 3 of Battaglia et al. [10].

A high-level illustration of SGS-Net can be found in Figure 4.5. The
initial node features v

(0)
i are given by the Node Encoder, and we obtain

initial edge features e(0)
ij by running the Node Encoder on all neighboring

union masks Sij . Then, we pass them through multiple Residual GraphNet
Layers (RGLs), which are an adaptation of a GraphNet Layer [10] with
residual connections. Our RGL first applies an edge update:

e
(l+1)
ij = e

(l)
ij + φ(l)

e

(
v

(l)
i ,v

(l)
j , e

(l)
ij

)
, (4.1)

where φ(l)
e is an MLP, and l describes the layer depth. This is followed by a

node update:

E(l)
i =

{
φ(l)
v1

(
e

(l+1)
ij ,v

(l)
j

)
: (i, j) ∈ E

}
(4.2)

v
(l+1)
i = v

(l)
i + φ(l)

v2

(
E(l)
i ,v

(l)
i

)
, (4.3)

where A is the mean of all elements in the set A, and φ
(l)
v1 , φ

(l)
v2 are MLPs.

We additionaly apply ReLUs after the residual connections. After passing
through L levels of RGLs, we end up with the set of node and edge feature
vectors V =

{
v

(L)
i

}
, E =

{
e

(L)
ij

}
. We pass these through an output layer

that aggregates these features:

sG = σ
(
φo
(
V, E

))
∈ [0, 1], (4.4)

96

where φo is yet another MLP and sG is the predicted graph score for seg-
mentation graph G, and σ is the sigmoid function. The output of SGS-Net is
a scalar score in [0, 1].

4.1.5 Training Procedure

We use simple loss functions to train our networks. For SplitNet, we apply
a weighted binary cross entropy (BCE) loss to the probability map p: `split =∑

uwu `bce (pu, p̂u) where u ranges over pixels, p̂ ∈ {0, 1}h×w is ground
truth boundary, and `bce is the binary cross entropy loss. The weight wu
is inversely proportional to the number of pixels with labels equal to p̂u,
normalized to sum to 1. DeleteNet is also trained with standard BCE loss.
For SGS-Net, we train it to regress to a certain score in the range [0, 1]. For
a given segmentation, we compute the Overlap F-measure, F [175] and
Overlap F@.75 measure [115], where the latter is a metric that indicates the
percentage of correctly segmented objects with a certain accuracy. We train
SGS-Net with `SGS = `bce(sG, .8F + .2F@.75), thus it learns to predict a
score based on the number of correctly identified pixels and instances. Note
that this regression problem is very difficult to solve. However, the scores do
not actually matter as long as the relative scoring is correct, since building
the sample tree relies on this only (see line 8 of Algorithm 2). In Section 4.2.7
we show that while SGS-Net may not solve the regression problem well, it
learns to rank graphs accurately.

Our Node Encoder is shared amongst all of the networks, including
SplitNet, DeleteNet, and SGS-Net. We first jointly train the SO-Nets for
200k iterations, with one segmentation graph per network per iteration (the
batch sizes is the number of instances in the segmentation graph) so that
the Node Encoder contains useful information for both operations. Next,
we hold the Node Encoder fixed while we train SGS-Net for 100k iterations.
To train SGS-Net, we take an initial segmentation and perturb it with the
four proposed sampling operations and compute their ground truth scores.
However, we do not use the SO-Nets, instead we randomly split masks with
sampled lines, merge neighboring masks, delete masks, and add masks in

97

the same fashion as Xie et al. [175].
Lastly, we use ResNet50 [62] combined with Feature Pyramid Net-

works [100] (FPN) to encode RGB images before passing them to the Node
Encoder. However, since we are training with (a slightly more cluttered
version of) the non-photorealistic synthetic dataset from Xie et al. [175], we
perform modality tuning [4], where we fine-tune earlier convolutional layers
of ResNet50 during training, and use the COCO [99] pretrained ResNet50
during inference. Modality tuning is performed during training of the
SO-Nets, and held fixed during SGS-Net training. This helps with general-
ization from simulation to the real-world and we show the optimal amount
of ResNet50 to modality tune for generalization in Section 4.2.3.

4.2 Experiments

4.2.1 Implementation Details

All images have resolution H = 480,W = 640. For our networks, we
crop and resize the image, depth, and masks to h = w = 64. All training
procedures use Adam [81] with an initial learning rate of 1e-4. We use
K = 3 sample tree expansion iterations with a branching factor B = 3.
Max nodes and edges are set to mn = 100,me = 300 during training, and
mn = 350,me = 1750 during inference. Undirected edges are handled by
including both (i, j) and (j, i) as directed edges in the graph. For each seg-
mentation graph, edges are connected between nodes if their corresponding
masks are within 10 pixels in set distance. Additionally, when sampling a
candidate graph, we first randomly choose a sampling operation, compute
all possible perturbation scores (e.g. split scores sτ for each mask), and ran-
domly select 3 of these perturbations that have a score of 0.7 or higher. This
gives the opportunity to explore more segmentations within the allotted
budget. All experiments are trained and evaluated on a single NVIDIA
RTX2080ti GPU.

98

4.2.2 Datasets and Metrics

We evaluate our method on two real-world datasets of challenging cluttered
tabletop scenes: OCID [152] and OSD [135], which have 2346 images of
semi-automatically constructed labels and 111 manually labeled images,
respectively. Our SO-Nets and SGS-Net are trained on a more cluttered
version of the synthetic Tabletop Object Dataset (TOD) [175] (introduced in
Chapter 3), where each scene has anywhere between 20 and 30 ShapeNet [24]
objects. We use 20k scenes in total, with 5 images per scene.

Xie et al. [175] introduced the Overlap P/R/F and Boundary P/R/F
measures for the problem of UOIS. However, these metrics do not weight
objects equally; they are dependent on the size and larger objects tend to
dominate the metrics. Thus, we introduce a variation to these metrics that
equally weights the errors of individual objects regardless of their size.
Given a Hungarian assignment A between the predicted instance masks
{Si}Ni=1 and the ground truth instance masks {Ŝj}Mj=1, we compute our
Object Size Normalized (OSN) P/R/F measures as follows:

Pn =

∑
(i,j)∈A

Pij

N
, Rn =

∑
(i,j)∈A

Rij

M
, Fn =

∑
(i,j)∈A

Fij

max(M,N)
,

Fn@.75 =

∑
(i,j)∈A

1{Fij >= 0.75}

max(M,N)
,

where Pij , Rij , Fij are the precision, recall, and F-measure of Si, Ŝj . Note
that the Fn@.75 penalizes both false positive and false negative instances,
as opposed to the normal F@.75, which does not penalize false positives.
Similarly to Xie et al. [175], we can apply the OSN metrics to the pixels and
boundaries, giving us Overlap and Boundary Pn/Rn/Fn measures.

Since RICE is a stochastic method, we run each experiment 5 times and
show means and standard deviations for all metrics.

99

Figure 4.6: Modality tuning on OCID [152] and OSD [135] shows that tuning
up to conv2_1 when training on simulated data generalizes best to real data.
Note that standard deviation bars are shown, but are very tight and difficult
to see.

4.2.3 Encoding RGB and Modality Tuning

Inspired by Aytar et al. [4], we perform an ablation to study how to best
generalize from our non-photorealistic dataset TOD to real-world data.
Starting from a ResNet50 pre-trained on COCO [99], we ablate over tuning
the conv1 layer, the conv2_1, conv2_2, conv2_3 bottleneck building
blocks [62], or keeping ResNet fixed. The idea is that by fixing the rest of
the layers, we can encourage ResNet to learn the high level representation
it has learned on COCO, on our simulated dataset. Thus, our SO-Nets and
SGS-Net will learn to consume this high-level representation to provide
their predictions. Then, during inference in the real-world, we resort back
to the pre-trained ResNet to extract that representation from real images.
In Figure 4.6, we show the results of our experiment. Interestingly, only
modality-tuning conv1 leads a small dip in performance compared to no
tuning, while the optimal tuning for our scenario is to tune conv1 and
conv2_1. For the rest of this section, all networks will have been trained
with this optimal setting.

4.2.4 SOTA Improvements

We demonstrate how RICE can improve upon predicted instance segmenta-
tions from state-of-the-art methods. In particular, we apply it to the results
of Mask R-CNN [63], PointGroup [72], UOIS-Net-3D [178], and UCN [173].
We employ RICE by returning the best segmentation from the leaves as

100

Figure 4.7: Applying RICE to refine results from state-of-the-art instance
segmentation methods leads to improved performance across the board.
Note that standard deviation bars are shown, but are very tight and difficult
to see.

scored by SGS-Net. For brevity, we only show Overlap Fn, Boundary Fn,
F@.75, and Fn@.75 in Figure 4.7 on both OCID and OSD. The light orange
bars show the additional performance that RICE provides over the output of
the methods. Standard deviations are shown as error bars, but are in general
very narrow, showing that our method provides consistent results despite
its stochasticity. RICE provides substantial improvements to all methods.
The largest gains occur in Mask R-CNN and PointGroup, with 21.6% and
32.3% relative gain in Fn@.75 on OCID, respectively. Additionally, on the
already strong results from UOIS-Net-3D and UCN, RICE achieves 11.0%
and 4.0% relative gain in Fn@.75 on OCID, respectively. These results are
similar on OSD, with the gains being slightly less pronounced, which we
believe is due to OSD being a smaller dataset with less clutter. Note that
applying RICE increases both F@.75 and Fn@.75, indicating that not only is
it capturing the object identities correctly, it is not simultaneously predicting
more instances (false positives).

4.2.5 Ablation Study

We aim to answer two questions with this study: 1) how good are the
samples suggested by our SO-Nets, and 2) to what degree does SGS-Net
increase performance and robustness? We study these questions on the
larger OCID.

Since the SO-Nets alone do not provide scores of the perturbed segmen-

101

SO-Nets SGS-Net
Overlap Boundary

Pn Rn Fn Pn Rn Fn F@0.75 Fn@0.75
7 7 85.1 (–) 83.0 (–) 77.8 (–) 84.6 (–) 76.5 (–) 75.0 (–) 78.2 (–) 77.0 (–)
3 7 84.7 (1.23) 89.4 (0.19) 82.3 (1.09) 82.7 (1.37) 82.8 (0.19) 78.7 (1.10) 89.0 (0.26) 84.2 (1.26)
3 3 86.3 (0.03) 89.1 (0.01) 83.6 (0.05) 84.5 (0.04) 82.5 (0.04) 80.0 (0.04) 88.5 (0.02) 85.5 (0.05)

Table 4.1: Ablation to test the utility of SO-Nets and SGS-Net on OCID [152]
starting from UOIS-Net-3D [178] masks. Only using the sample operator
networks (SO-Nets) in an iterative sampling scheme already provides an
increase in performance, showing that the smart samples are generally
improving the initial segmentations. However, the standard deviations
(shown in parentheses) are relatively high. Adding in SGS-Net boosts
performance while drastically lowering the variance, demonstrating the
efficacy of SGS-Net in consistently filtering out bad suggestions by the
SO-Nets.

tation graphs, we structure our ablation such that this is not needed in order
to answer 1). Our SO-Nets are trained to provide smart perturbations that
are closer to the ground truth segmentation, so every sample is supposed to
be better than the original graph. With this insight, we design an experiment
where we run RICE with branch factor B = 1 and K = 5 iterations, always
add the candidate graph to the tree without consulting SGS-Net, and return
the final graph. Essentially, this can be seen as an iterative segmentation
graph refinement procedure where the sampled graph should be better than
the previous in every iteration. Starting from initial masks provided by
UOIS-Net-3D [178], we see in Table 4.1 that applying this iterative sampling
scheme with SO-Nets only provides better results on almost all metrics than
without. However, adding SGS-Net back into the procedure results in better
Overlap Fn, Boundary Fn, and Fn@.75, while significantly reducing the stan-
dard deviation of the results by two orders of magnitude. This demonstrates
that having SGS-Net in RICE delivers not only more accurate performance,
but also more robust performance with relatively small variance, which
answers 2). Note that Fn@.75 is slightly lower with F@.75 higher, indicating
that SO-Nets are suggesting more samples that better capture the objects,
but are suggesting too many instance segments.

102

Initial Instance Split only Merge only Delete/Add only
Segmentation Method F@.75 Fn@0.75 F@.75 Fn@0.75 F@.75 Fn@0.75

UCN [173] 92.0 (100%) 87.2 (64.7%) 88.8 (-23.1%) 87.5 (73.5%) 89.5 (3.8%) 86.9 (55.9%)
UOIS-Net-3D [178] 88.5 (101%) 84.6 (91.6%) 78.4 (2.1%) 77.4 (4.8%) 78.3 (1.1%) 77.1 (1.2%)
Mask R-CNN [63] 79.7 (60.3%) 75.8 (82.0%) 66.0 (0.0%) 64.6 (1.4%) 69.1 (13.6%) 67.2 (20.1%)
PointGroup [72] 82.4 (86.1%) 77.4 (87.7%) 61.2 (1.6%) 60.7 (2.1%) 64.1 (13.1%) 63.1 (14.4%)

Table 4.2: Sampling Operation Ablation. We omit standard deviations as
they are all less than 0.0005. We show results on F@.75 and Fn@.75. In
parentheses, we show relative gain compared to the full RICE method (with
all sampling operations).

4.2.6 Evaluating the Usefulness of Each Sampling Operation

We provide another ablation experiment where we test the efficacy of each
sampling operation. In particular, we test RICE while only using one sam-
pling operation at a time, so that the sample tree is built only by a particular
operation, e.g. splitting. This allows us to determine which of the sampling
operations is most helpful in comparison to the initial instance segmentation
method (e.g. UOIS-Net-3D [178], UCN [173]).

We test Split only, Merge only, and Delete/Add only. Note that we
group Delete and Add together since the Add operation is essentially the
Delete operation after extracting connected components from an external
foreground mask F (See Section 4.1.3). In Table 4.2, we show the results
for F@.75 and Fn@.75 metrics using UCN [173], UOIS-Net-3D [178], Mask
R-CNN [63], and PointGroup [72] as initial instance segmentation methods.
We also show the percentage of increased performance with respect to the
increased performance when using all sampling operations in parentheses.
Clearly, we see that the split operation alone results in most of the perfor-
mance gain compared to the full RICE method. This indicates that all four
initial instance segmentation methods tend to under-segment, which is a
common failure case in densely cluttered environments. UCN gains a lot
from merging; the reason for this is that a common failure case from its
pixel-clustering procedure is that the boundaries of the objects tend to be
clustered as a separate object which results in over-segmentation. Merging
can easily solve this issue. Lastly, Mask R-CNN and PointGroup also ben-

103

efit from delete/add, which suggests that they are either predicting false
positives and/or false negatives.

4.2.7 SGS-Net Ranking

GT Score: 0.820 GT Score: 0.848

Figure 4.8: Can you spot the
differences between the seg-
mentations?

Figure 4.8 shows an example of how diffi-
cult scoring the segmentations graphs is;
the two slightly different segmentations
have a significant difference in their ground
truth scores. In fact, SGS-Net does a poor
job at scoring the graphs, with a mean
absolute error (MAE) of 0.184 and even
higher standard deviation shown in Ta-
ble 4.3. These values are high given that
the scores are in the range [0, 1]. Then, this begs the question, why does
SGS-Net work well within our proposed RICE framework? Recall that the
score magnitudes do not matter, only the relative scoring (Section 4.1.2).
We claim that SGS-Net learns to rank the graphs accurately, and design an
experiment to test this hypothesis.

MAE nDCG
Minimum – 0.844 (0.196)
SO-Nets – 0.944 (0.098)
SGS-Net 0.184 (0.212) 0.952 (0.095)

Table 4.3: Ranking study on OCID and OSD.

We leverage the normalized Discounted Cumulative Gain (nDCG) [71]
which is a popular ranking metric in the information retrieval community.
The DCG is computed as

∑p
i=1

2reli−1
log2(i+1) where reli is the numerical relevance

of the item at position i (higher is better). This essentially computes a
weighted sum of the relevance with a discount factor for further items, which
places more emphasis on the high-ranking predictions. The normalized
version divides DCG by the “ideal” version, i.e. the DCG of the correct
ranking. This results in nDCG ∈ [0, 1] with higher being better. We compute

104

nDCG of the ranking of the iterative sampling experiment in Section 4.2.5,
with relevance values in {0, ...,K}. The ranking for SO-Nets is given by
the order of the predicted graphs, and we use SGS-Net scores to compute
its ranking/relevance. We also compute the nDCG of the worst ranking,
denoted “minimum”. In Table 4.3, we see that both SO-Nets and SGS-Net
perform significantly better than the worst ranking. SGS-Net provides better
ranking than SO-Nets with slightly lower variance, which helps to explain
its effectiveness in RICE.

4.2.8 Visualizing Refinements

In the left side of Figure 4.9 (green box), we qualitatively demonstrate
successful refinements from applying RICE to instance masks provided
by state-of-the-art methods. The first column shows an example where
many nearby objects are under-segmented. Indeed, RICE manages to find
all of the necessary splits except for one. In general, RICE is quite adept
at splitting under-segmented instance masks as discussed in Section 4.2.6.
Column two shows an initial mask that is fixed with a merge operation.
Column three shows a false positive mask on the textured background,
which is suppressed by RICE’s deletion sampling operation. In the fourth
column, the initial mask is missing quite a few objects, and RICE is able
to not only recover them but also correctly segment them, resulting in an
almost perfect instance segmentation. In the last column, the bottom left
segment is bleeding into a neighboring segment, which is fixed through
multiple perturbations (i.e. split, then merge). These examples demonstrate
RICE’s capabilities to split, merge, delete, and add masks appropriately to
refine initial instance masks.

4.2.9 Failures and Limitations

In the right side of Figure 4.9 (red box), we discuss some failure modes and
limitations. The first column demonstrates a failure mode where RICE tends
to over-segment objects with a lot of texture (e.g. cereal box). We believe that
this is due to TOD lacking texture on many of its objects [178]. The second

105

G
ro

u
n

d
 T

r
u

th
In

it
ia

l
M

a
s
k
s

A
ft

e
r
 R

IC
E

Figure 4.9: We demonstrate successful refinements (left, green box) for each
of the sampling operations. Failure modes (right, red box) include textured
objects and non-neighboring masks that belong to the same object. Best
viewed in color and zoomed in on a computer screen.

column shows a limitation: since RICE only considers merging neighboring
masks, it cannot merge non-neighboring masks that belong to the same
object. RICE does nothing and the book is still incorrectly segmented in two
pieces. We leave this as an interesting avenue for future work.

4.2.10 Guiding a Manipulator with Contour Uncertainties for Ef-
ficient Scene Understanding

Fully segmenting and understanding a scene of cluttered objects is necessary
for various manipulation tasks, such as counting objects or re-arranging and
sorting them. One way for doing this is to actively singulate each object [25].
However, such an approach can be extremely inefficient. Here we show
how contour uncertainties extracted from RICE can help to solve this prob-
lem with potentially far less interactions. Specifically, we extract contour
uncertainties by computing the standard deviation of the mask contours
of each leaf graph. These uncertainties let us distinguish between objects
that are already confidently segmented and those that require physical inter-
action to resolve segmentation uncertainty. We grasp [155] any object that
has uncertain contours in order to determine its correct segmentation, and
repeat this until no more uncertainty persists. Thus, interactions are only

106

Algorithm 4 Guiding a Manipulator with RICE
1: repeat
2: Get S from initial instance segmentation method (e.g. UCN [173])
3: Run RICE to get best masks and contour uncertainty
4: if Contour Uncertainty is present then
5: Sample a grasp with Contact-GraspNet [155] from the uncertain

masks, and execute it
6: end if
7: until No Contour Uncertainty

required to resolve the uncertain portions of the scene, which can potentially
be much less than the number of objects, leading to a more efficient scene
understanding method. For example, in Figure 4.10, only two grasps are
required to fully understand the scene. A video at the project website1

shows the full set of grasping trials.
To extract contour uncertainties, we exploit the fact that RICE is a stochas-

tic algorithm by design. Each leaf is essentially a sampled trajectory of states
(segmentations) and actions (perturbations) from the initial segmentation S.
These trajectories may have explored different parts of the state space (e.g.
perturbed different object masks in the scene). We compute the standard
deviation of the contours of each leaf graph in order to provide contour
uncertainty estimates, which are shown in red in Figure 4.10. Additionally,
we visualize the confident contours (which are present in each leaf graph)
in green.

The contour uncertainties depict certain segmentations that not all of
the trajectories explored. It reflects which objects RICE is not as confident
about. If a mask Si in the initial segmentation is split the same way in all leaf
graphs, then RICE is confident that Si should be split, and there will be no
uncertainty. However, if Si is only split in some of the leaf graphs, then RICE
is not as confident about whether Si truly represents more than 1 object, and
an interaction is required to resolve such uncertainty. For example, in Trial
2 in the video, the cup and the bowl it is on top of (far left) are constantly

1https://github.com/chrisdxie/rice

107

https://github.com/chrisdxie/rice

UCN Masks

Contour

Uncertainty

Interactions t = 0 t = 1 t = 2

Figure 4.10: UCN masks [173] and contour uncertainties from RICE in a
trial of our scene understanding experiment. Uncertainties are shown in red
with average contours in green. After grasping the milk carton and red cup,
the scene is segmented with full certainty, indicating that the scene is fully
understood. Thus, the algorithm terminates without having to singulate
each object. Best viewed in color and zoomed in.

under-segmented together by UCN [173]. RICE splits it correctly each time,
and there is no uncertainty about splitting that mask, as evidenced by the
uncertainty contours. Pseudocode of the grasping algorithm can be found
in Algorithm 4.

4.3 Discussion

In this chapter, we proposed a novel framework that utilizes a new graph-
based representation of instance segmentation masks. It incorporates deep
networks capable of sampling smart perturbations, and a graph neural
network that exploits relational inductive biases. Our experimental analysis
revealed insight into why our method achieves state-of-the-art performance
when combined with previous methods. We further demonstrated that our
uncertainty outputs can be utilized to perform efficient scene understanding.

Our proposed work comes with limitations (aside from those discussed
in Section 4.2.9). One of the main ones is the computational burden; the
algorithm runs at 10-15 seconds per frame, depending on the expansion of

108

the sample tree. Additionally, it is GPU-memory intensive as the sample tree
must be stored in GPU memory. At a higher-level, the uncertainty estimates
that we generate from RICE are rudimentary and do not interact with the
grasping algorithm in any way. For example, grasping some parts of the
scene, such as the objects at the bottom of a pile, may result in large changes
to the current scene structure that may not be ideal. An improved model
would produce uncertainty estimates that not only convey the uncertainty
of the segmentation from a vision perspective, but also which grasping (or
other interaction primitives) actions would best allow for understanding
the scene, such as maximizing information gain [87].

In the next chapter, we discuss future directions that encompass such
ideas.

109

Chapter 5

Conclusion

As we begin to deploy robots into unstructured environments such as homes
and/or offices, they will need to be equipped with the ability to perceive and
reason about unseen objects. Different from “in-the-wild” computer vision,
this will require that any potential object of interest, including the unseen
objects, be identified as opposed to a pre-defined set of object categories.
As this problem is quite difficult, methods with accompanying uncertainty
estimates are desirable in assisting robots with choosing safe and efficient
actions. Solutions based on data-hungry deep learning methods, which
recently have surged to become the dominant and most successful methods
for solving visual perception problems, will require large amounts of data
for training. Collecting such datasets in the real-world is both expensive
and time-consuming as it requires a data collection phase along with a
manual annotation phase. Thus, it is appealing to look towards utilizing
large amounts of synthetic data, however the Sim-to-Real gap is another
hurdle that must be overcome in this case.

5.1 Contributions

In this thesis, we designed solutions for the problem of detecting and seg-
menting unseen object instances based on deep networks primarily trained
on large scale synthetic datasets. Our proposed methods investigated the

110

use of different visual cues including motion cues (in the form of optical
flow) and geometry cues (in the form of depth maps). We designed our
networks to be able to generalize from simulation to the real world with
minimal adaptations.

Beginning with Chapter 2, we presented a novel neural network archi-
tecture, denoted Pixel Trajectory Recurrent Neural Network (PT-RNN), that
primarily exploited motion cues in order to segment any entity in a video
that can move or be moved. PT-RNN is designed based on pixel trajectories,
which are pixels in time-adjacent frames that are linked together by optical
flow (extracted from an external method such as Flow-Net-2 [69]). The
problem was formulated as foreground motion clustering, where feature
embeddings of the pixel trajectories are clustered in order to reveal the
different object instances. Unseen objects can then be discovered as long
as they exhibit coherent motion evidenced by optical flow. We pre-trained
PT-RNN on a large-scale synthetic dataset of flying chairs and showed that
this pre-training was necessary in order to achieve state-of-the-art results on
multiple motion segmentation datasets.

However, a perception module that requires each object to exhibit mo-
tion before recognizing it will not scale to a large number of objects, as the
robot will have to physically manipulate all inanimate objects of interest be-
fore applying such a perception module. Thus, in Chapter 3, we introduced
UOIS-Net, a method that instead exploits geometry cues to segment unseen
objects from static RGB-D images. UOIS-Net is designed to separately lever-
age RGB and Depth in a way that allows for training on non-photorealistic
synthetic data while generalizing to real-world settings without any fine-
tuning. To train the method, we generated a large-scale non-photorealistic
dataset of random objects on random tabletops. UOIS-Net is able to detect
and segment arbitrary unseen objects in tabletop environments, which are
common to robot manipulation scenarios. We demonstrated state-of-the-art
performance on multiple tabletop object datasets, along with the ability to
clear a table of unseen objects by combining the outputs of UOIS-Net with a
grasping algorithm [109].

The strong performance and ease-of-use of UOIS-Net has facilitated

111

further research of robot manipulation of unseen objects. In the original
published work [175], we demonstrated grasping of unseen objects for table
clearing. This has been extended to grasping in clutter [110], and further
advancements in the grasping community has also built off of unseen object
instance segmentations [155]. Reconstruction of unseen objects for general
manipulation planning including grasping, pushing and re-arrangement
has also been explored [2]. Re-arrangement of unseen objects in particular
has seen some interesting advancements [132, 39]. Additionally, UOIS-Net
has been utilized as a core piece of interesting solutions to the difficult
problem of unseen object pose estimation [117].

While UOIS-Net and competitor methods have shown promising per-
formance for segmenting unseen objects, they still tend to fail in heavily
cluttered scenes and do not provide uncertainty estimates. To combat this,
in Chapter 4, we introduced a novel framework for refining initial instance
masks, called RICE. RICE consumes an initial instance mask output by a
method such as UOIS-Net, and samples perturbations to it in order to refine
it. This is done in a novel graph-based representation, where a graph neural
network is trained to evaluate the perturbed instance masks, and sampling
operation deep networks are learned to suggest smart perturbations. RICE
outputs both the best scoring graph according to the GNN and an uncer-
tainty estimate of the instance masks, which we showed could be used for
an efficient scene understanding application. Similarly to UOIS-Net, we
trained RICE purely on non-photorealistc synthetic data, using modality
tuning [4] as a means for generalizing from simulation to the real world.
We demonstrated that RICE improves performance amongst multiple direct
segmentation methods, including UOIS-Net.

In summary, we have designed multiple solutions to attack the problem
of discovering and segmenting unseen object instances for robot perception.
The work in this thesis is just the beginning of building and learning per-
ceptual systems that imbue robots with the ability to perceive and reason
about unseen objects in unstructured settings. We conclude this thesis with
a discussion of interesting future directions of this work.

112

5.2 Future Directions

There are many interesting avenues of future work in the realm of perceiving
and reasoning about unseen objects. We discuss a few here:

5.2.1 Incorporating Interaction and Self-Supervised Learning

In Chapter 4, we briefly demonstrated an interactive application that per-
forms scene understanding by resolving uncertainties output by RICE. The
manipulation of the scene can lead to valuable signals for training, which we
did not make use of in our proof-of-concept demonstration. For example, in-
teractions such as poking or grasping will produce motion in the scene. This
signal can be potentially exploited by ideas such as those from Chapter 2 to
help learn where the original segmentation made mistakes. Additionally,
constantly re-arranging the scene to not only induce motion, but view the
objects from different viewpoints and poses can lead to more training data to
fine-tune the network weights. This idea bares many similarities to the self-
supervised pipeline of Deng et al. [44]. Such an interactive feedback loop can
allow the robot perception system to overfit to a particular scene. Although
overfitting typically has a negative connotation in machine learning, in this
situation it would be advantageous since the robot will be performing tasks
in the same environment (e.g. a kitchen cleaning robot), and overfitting to
the objects present in the scene will only make the perception of the specific
scene more accurate.

5.2.2 Better Uncertainty Estimate Representations

Obtaining uncertainty estimates from deep neural networks has recently
been gaining more attention. A couple of methods of doing this include
Monte Carlo dropout as an approximation to the posterior distribution [54]
and training multiple networks on the same dataset in parallel [92]. These
ideas have been used to generate uncertainty estimates in computer vision
and robot perception tasks [3, 76, 102].

These methods, similar to RICE, tend to give uncertainty predictions at

113

the pixel level. However, instance segmentations are at the object level, and
there arises a question of whether uncertainty would be more useful at the
object level? In this case, these object-level uncertainties could potentially
be predicted in a way that helps the robot select an action to resolve the
uncertainty. For example, in our efficient scene understanding application
in Chapter 4, it would make sense to manipulate the objects that have the
most uncertainty and that do not support the pile of objects, so that the
induced motion in the scene is restricted to only the object of interest. On
the other hand, pixel-dense uncertainty allows the robot to focus on parts
of objects that are more uncertain than others, which could also be useful
in tasks such as 3D object reconstruction and understanding. Finding the
right representation for uncertainty in segmentation masks remains an open
problem.

In addition to the many questions yet to be answered in this domain,
there are many question yet to be discovered as well. Eventually, robots
should be able to leverage reliable uncertainty estimates produced by deep
learning perception systems.

5.2.3 Generalizing Outside of Tabletop Settings

An ideal ability for robots is to be able to recognize unseen objects in any
environment. In the majority our work (Chapters 3 and 4), we focused
on unseen objects in tabletop environments. We dealt with objects that
were graspable and on a planar surface, thus our definition of “unseen
object” was easily defined. However, the definition of “object” can span
many different definitions, which likely will depend on the application
of interest. For example, COCO [99] object classes include small items
such as silverware (fork, knife, cup, and spoon) and larger classes such as
vehicles (car, motorcycle, airplane, and bus), while KITTI [56] includes object
classes that autonomous vehicles would care about such as cars, trucks, and
pedestrians. In these settings, it is more difficult to define “unseen object” as
there is a lack of similarity and/or contextual structure amongst the objects.
Thus, there is an open question of how to define “unseen objects” in general

114

settings. Perhaps an interesting way of extracting similarity amongst a
known set of objects and generalizing that to unseen objects is to develop a
method that can detect whether a potential object is similar to the known
set of classes but is not confident enough to classify it, which bears ideas
that are somewhat similar to ShapeMask [89].

5.2.4 Connecting Actions to Segmentations

The intermediate outputs of robotic vision (e.g. predicted instance masks,
or depth maps) ultimately will be used to compute actions in real-world
settings [154]. In all of the work we presented in this thesis, we have not
considered linking our segmentation masks directly with actions. An in-
teresting avenue of future work involves predicting unseen object instance
masks such that a corresponding downstream task is easy to solve. For
example, if the task is grasping, then only grasp points (e.g. a cup handle)
needs to be segmented with high accuracy. To set down an object on a table
safely, the robot needs to understand the spatial extent of the bottom of the
object so that it does not crash the object into the table at a high velocity.
Additionally, segmenting parts of the object that may potentially be stable
hyperplanes can allow robots to safely put down objects in a variety of con-
figurations, which can aid in packing tasks. The idea of using downstream
tasks to inform the intermediate representation has shown interesting results
in grasping [48], however has yet to be applied to segmentation. Such an
idea can be combined with affordance-based segmentation [45] to further
enhance the information present.

5.2.5 Lifelong Learning

When a robot is first deployed in a new environment and sees an unseen
object for the first time, technically that is the only time the object is unseen.
All subsequent times that the object is observed, it will have been seen in
a previous interaction phase, thus it should no longer be unseen. Thus,
it makes sense then that when perceiving this object, the robot should no
longer rely on methods such as the ones presented in this thesis, but instead

115

one that incrementally builds up specific detection models over time. In
other words, the robot should follow a lifelong learning approach [158]
that renders unseen objects as no longer unseen. Examples of interesting
directions here involve understanding the object from multiple viewpoints
with object-specific segmentors [172], few-shot learning approaches [168],
and 3D object understanding of these unseen objects [2]. This can even
be applied to understand an entirely new object class [177] if the set of
unseen objects exhibits a similar structure. The work presented in this thesis
provides the basis for which such methods can be developed for unseen
objects in order to render them as no longer unseen.

Final Thoughts

In order for us to see more robots operating in our homes, they will need
the ability to recognize and manipulate unseen objects. This thesis has put
forward a few initial attempts at solving this while assuming certain problem
structures for the solutions to exploit. While the results are promising, there
is much work to be done and it will be exciting to see the development
of more methodologies for this research question. We hope to see future
research that builds off of our presented work, especially the ones such
as incremental or lifelong learning that will eventually make the central
problem of this thesis obsolete.

116

Bibliography

[1] Daron Acemoglu and Pascual Restrepo. Robots and jobs: Evidence
from us labor markets. Journal of Political Economy, 128(6):2188–2244,
2020.

[2] William Agnew, Christopher Xie, Aaron Walsman, Octavian Murad,
Caelen Wang, Pedro Domingos, and Siddhartha Srinivasa. Amodal 3d
reconstruction for robotic manipulation via stability and connectivity.
In Conference on Robot Learning (CoRL), 2020.

[3] Vijay Badrinarayanan Alex Kendall and Roberto Cipolla. Bayesian
segnet: Model uncertainty in deep convolutional encoder-decoder
architectures for scene understanding. In British Machine Vision Con-
ference (BMVC), 2017.

[4] Yusuf Aytar, Lluis Castrejon, Carl Vondrick, Hamed Pirsiavash, and
Antonio Torralba. Cross-modal scene networks. IEEE transactions on
pattern analysis and machine intelligence, 40(10):2303–2314, 2017.

[5] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Robust object
tracking with online multiple instance learning. IEEE transactions on
pattern analysis and machine intelligence, 2011.

[6] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39
(12):2481–2495, 2017.

117

[7] Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville. Delving deeper
into convolutional networks for learning video representations. In
International Conference on Learning Representations (ICLR), 2016.

[8] John L Barron, David J Fleet, and Steven S Beauchemin. Performance
of optical flow techniques. International journal of computer vision, 12
(1):43–77, 1994.

[9] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo
Jimenez Rezende, et al. Interaction networks for learning about
objects, relations and physics. Advances in neural information processing
systems, 29:4502–4510, 2016.

[10] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti,
David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational in-
ductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[11] Abhijit Bendale and Terrance Boult. Towards open world recognition.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015.

[12] Rodrigo Benenson, Stefan Popov, and Vittorio Ferrari. Large-scale
interactive object segmentation with human annotators. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[13] Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pascal Fua.
Multiple object tracking using k-shortest paths optimization. IEEE
transactions on pattern analysis and machine intelligence, 2011.

[14] Pia Bideau and Erik Learned-Miller. A detailed rubric for motion
segmentation. arXiv preprint arXiv:1610.10033, 2016.

[15] Pia Bideau and Erik Learned-Miller. It’s moving! a probabilistic model
for causal motion segmentation in moving camera videos. In European
Conference on Computer Vision (ECCV), pages 433–449. Springer, 2016.

118

[16] Pia Bideau, Aruni RoyChowdhury, Rakesh R Menon, and Erik
Learned-Miller. The best of both worlds: Combining cnns and ge-
ometric constraints for hierarchical motion segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[17] Jeannette Bohg, Karol Hausman, Bharath Sankaran, Oliver Brock,
Danica Kragic, Stefan Schaal, and Gaurav S Sukhatme. Interactive
perception: Leveraging action in perception and perception in action.
IEEE Transactions on Robotics, 33(6):1273–1291, 2017.

[18] Francisco Bonin-Font, Alberto Ortiz, and Gabriel Oliver. Visual nav-
igation for mobile robots: A survey. Journal of intelligent and robotic
systems, 53(3):263–296, 2008.

[19] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai,
Matthew Kelcey, Mrinal Kalakrishnan, Laura Downs, Julian Ibarz, Pe-
ter Pastor, et al. Using simulation and domain adaptation to improve
efficiency of deep robotic grasping. In IEEE International Conference on
Robotics and Automation (ICRA), 2018.

[20] Thomas Brox and Jitendra Malik. Object segmentation by long term
analysis of point trajectories. In European Conference on Computer Vision
(ECCV), 2010.

[21] Arunkumar Byravan and Dieter Fox. Se3-nets: Learning rigid body
motion using deep neural networks. In IEEE Conference on Robotics
and Automation (ICRA), 2017.

[22] Arunkumar Byravan, Felix Leeb, Franziska Meier, and Dieter Fox. Se3-
pose-nets: Structured deep dynamics models for visuomotor planning
and control. In IEEE Conference on Robotics and Automation (ICRA),
2018.

[23] Miguel A Carreira-Perpinán. A review of mean-shift algorithms for
clustering. arXiv preprint arXiv:1503.00687, 2015.

119

[24] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanra-
han, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shu-
ran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet:
An Information-Rich 3D Model Repository. Technical Report
arXiv:1512.03012, 2015.

[25] Lillian Chang, Joshua R Smith, and Dieter Fox. Interactive singulation
of objects from a pile. In 2012 IEEE International Conference on Robotics
and Automation, 2012.

[26] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B
Tenenbaum. A compositional object-based approach to learning phys-
ical dynamics. In International Conference on Learning Representations,
(ICLR), 2017.

[27] Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yongming Huang,
and Youliang Yan. Blendmask: Top-down meets bottom-up for in-
stance segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[28] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin
Murphy, and Alan L Yuille. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected
crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40
(4):834–848, 2017.

[29] Liang-Chieh Chen, Alexander Hermans, George Papandreou, Florian
Schroff, Peng Wang, and Hartwig Adam. Masklab: Instance segmenta-
tion by refining object detection with semantic and direction features.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[30] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff,
and Hartwig Adam. Encoder-decoder with atrous separable con-
volution for semantic image segmentation. In European Conference
Computer Vision (ECCV), 2018.

120

[31] Vincent S Chen, Paroma Varma, Ranjay Krishna, Michael Bernstein,
Christopher Re, and Li Fei-Fei. Scene graph prediction with limited
labels. In Proceedings of the IEEE International Conference on Computer
Vision, 2019.

[32] Xinlei Chen, Ross Girshick, Kaiming He, and Piotr Dollár. Tensormask:
A foundation for dense object segmentation. In IEEE International
Conference on Computer Vision (ICCV), 2019.

[33] Jian Cheng, Jie Yang, Yue Zhou, and Yingying Cui. Flexible back-
ground mixture models for foreground segmentation. Image and Vision
Computing, 2006.

[34] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-
temporal convnets: Minkowski convolutional neural networks. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

[35] Simon Christoph Stein, Markus Schoeler, Jeremie Papon, and Flo-
rentin Worgotter. Object partitioning using local convexity. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[36] Erwin Coumans and Yunfei Bai. Pybullet, a python module for
physics simulation for games, robotics and machine learning. http:
//pybullet.org, 2016–2019.

[37] Michael Danielczuk, Matthew Matl, Saurabh Gupta, Andrew Li, An-
drew Lee, Jeffrey Mahler, and Ken Goldberg. Segmenting unknown
3d objects from real depth images using mask r-cnn trained on syn-
thetic data. In IEEE Conference on Robotics and Automation (ICRA),
2019.

[38] Michael Danielczuk, Arsalan Mousavian, Clemens Eppner, and Dieter
Fox. Object rearrangement using learned implicit collision functions.
arXiv preprint arXiv:2011.10726, 2020.

121

http://pybullet.org
http://pybullet.org

[39] Michael Danielczuk, Arsalan Mousavian, Clemens Eppner, and Dieter
Fox. Object rearrangement using learned implicit collision functions.
In IEEE International Conference on Robotics and Automation (ICRA),
2021.

[40] Achal Dave, Pavel Tokmakov, and Deva Ramanan. Towards segment-
ing everything that moves. arXiv preprint arXiv:1902.03715, 2019.

[41] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Ru-
binstein. A tutorial on the cross-entropy method. Annals of operations
research, 134(1):19–67, 2005.

[42] Bert De Brabandere, Davy Neven, and Luc Van Gool. Semantic in-
stance segmentation with a discriminative loss function. arXiv preprint
arXiv:1708.02551, 2017.

[43] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

[44] Xinke Deng, Yu Xiang, Arsalan Mousavian, Clemens Eppner, Timo-
thy Bretl, and Dieter Fox. Self-supervised 6d object pose estimation
for robot manipulation. In International Conference on Robotics and
Automation (ICRA), 2020.

[45] Thanh-Toan Do, Anh Nguyen, and Ian Reid. Affordancenet: An end-
to-end deep learning approach for object affordance detection. In 2018
IEEE international conference on robotics and automation (ICRA), 2018.

[46] Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe,
and Matthias Nießner. 3d-mpa: Multi-proposal aggregation for 3d
semantic instance segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[47] Alon Faktor and Michal Irani. Video segmentation by non-local con-
sensus voting. In British Machine Vision Conference (BMVC), 2014.

122

[48] Kuan Fang, Yuke Zhu, Animesh Garg, Andrey Kurenkov, Viraj Mehta,
Li Fei-Fei, and Silvio Savarese. Learning task-oriented grasping for
tool manipulation from simulated self-supervision. The International
Journal of Robotics Research, 39(2-3):202–216, 2020.

[49] Alireza Fathi, Zbigniew Wojna, Vivek Rathod, Peng Wang, Hyun Oh
Song, Sergio Guadarrama, and Kevin P Murphy. Semantic instance
segmentation via deep metric learning. arXiv preprint arXiv:1703.10277,
2017.

[50] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Con-
volutional two-stream network fusion for video action recognition.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[51] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-
based image segmentation. International Journal of Computer Vision
(IJCV), 2004.

[52] Martin A Fischler and Robert C Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 1981.

[53] Katerina Fragkiadaki, Geng Zhang, and Jianbo Shi. Video segmen-
tation by tracing discontinuities in a trajectory embedding. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[54] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approxima-
tion: Representing model uncertainty in deep learning. In International
Conference on Machine Learning (ICML), 2016.

[55] Victor Garcia and Joan Bruna. Few-shot learning with graph neural
networks. In International Conference on Learning Representations (ICLR),
2018.

[56] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.

123

Vision meets robotics: The kitti dataset. International Journal of Robotics
Research (IJRR), 2013.

[57] Benjamin Graham, Martin Engelcke, and Laurens Van Der Maaten.
3d semantic segmentation with submanifold sparse convolutional
networks. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[58] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik.
Learning rich features from rgb-d images for object detection and
segmentation. In European Conference Computer Vision (ECCV), 2014.

[59] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation
Learning on Graphs: Methods and Applications. IEEE Data Engineer-
ing Bulletin, 2017.

[60] Lei Han, Tian Zheng, Lan Xu, and Lu Fang. Occuseg: Occupancy-
aware 3d instance segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[61] Sam Hare, Stuart Golodetz, Amir Saffari, Vibhav Vineet, Ming-Ming
Cheng, Stephen L Hicks, and Philip HS Torr. Struck: Structured
output tracking with kernels. IEEE transactions on pattern analysis and
machine intelligence, 2016.

[62] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[63] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In IEEE International Conference on Computer Vision (ICCV), 2017.

[64] Tomáš Hodaň, Vibhav Vineet, Ran Gal, Emanuel Shalev, Jon Hanzelka,
Treb Connell, Pedro Urbina, Sudipta Sinha, and Brian Guenter. Photo-
realistic image synthesis for object instance detection. IEEE Interna-
tional Conference on Image Processing (ICIP), 2019.

124

[65] Berthold KP Horn and Brian G Schunck. Determining optical flow.
Artificial intelligence, 17(1-3):185–203, 1981.

[66] Ji Hou, Angela Dai, and Matthias Nießner. 3d-sis: 3d semantic in-
stance segmentation of rgb-d scans. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[67] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Rela-
tion networks for object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018.

[68] Weiming Hu, Xi Li, Xiaoqin Zhang, Xinchu Shi, Stephen Maybank,
and Zhongfei Zhang. Incremental tensor subspace learning and its
applications to foreground segmentation and tracking. International
Journal of Computer Vision, 2011.

[69] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox.
Flownet 2.0: Evolution of optical flow estimation with deep networks.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[70] Suyog Jain, Bo Xiong, and Kristen Grauman. Fusionseg: Learning to
combine motion and appearance for fully automatic segmention of
generic objects in videos. arXiv preprint arXiv:1701.05384, 2017.

[71] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evalu-
ation of ir techniques. ACM Transactions on Information Systems (TOIS),
20(4):422–446, 2002.

[72] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, and
Jiaya Jia. Pointgroup: Dual-set point grouping for 3d instance segmen-
tation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[73] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David
Shamma, Michael Bernstein, and Li Fei-Fei. Image retrieval using

125

scene graphs. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015.

[74] Zdenek Kalal, Krystian Mikolajczyk, Jiri Matas, et al. Tracking-
learning-detection. IEEE transactions on pattern analysis and machine
intelligence, 2012.

[75] Rudolph Emil Kalman. A new approach to linear filtering and predic-
tion problems. 1960.

[76] Alex Kendall and Yarin Gal. What uncertainties do we need in
bayesian deep learning for computer vision? In Advances in Neu-
ral Information Processing Systems (NeurIPS), 2017.

[77] Margret Keuper. Higher-order minimum cost lifted multicuts for
motion segmentation. 2017 IEEE International Conference on Computer
Vision (ICCV), pages 4252–4260, 2017.

[78] Margret Keuper, Bjoern Andres, and Thomas Brox. Motion trajec-
tory segmentation via minimum cost multicuts. In IEEE International
Conference on Computer Vision (ICCV), 2015.

[79] Margret Keuper, Siyu Tang, Bjorn Andres, Thomas Brox, and Bernt
Schiele. Motion segmentation & multiple object tracking by correla-
tion co-clustering. IEEE transactions on pattern analysis and machine
intelligence, 2018.

[80] John Maynard Keynes. Economic possibilities for our grandchildren.
In Essays in persuasion, pages 321–332. Springer, 2010.

[81] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In International Conference on Learning Representations,
(ICLR), 2015.

[82] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In International Conference on Learning
Representations (ICLR), 2017.

126

[83] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick.
Pointrend: Image segmentation as rendering. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[84] Takumi Kobayashi and Nobuyuki Otsu. Von mises-fisher mean shift
for clustering on a hypersphere. In International Conference on Pattern
Recognition (ICPR), 2010.

[85] Shu Kong and Charless Fowlkes. Recurrent pixel embedding for
instance grouping. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[86] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully
connected crfs with gaussian edge potentials. In Advances in Neural
Information Processing Systems (NeurIPS), 2011.

[87] Michael Krainin, Brian Curless, and Dieter Fox. Autonomous genera-
tion of complete 3d object models using next best view manipulation
planning. In IEEE Conference on Robotics and Automation (ICRA), 2011.

[88] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in Neural Information Processing Systems (NeurIPS), 2012.

[89] Weicheng Kuo, Anelia Angelova, Jitendra Malik, and Tsung-Yi Lin.
Shapemask: Learning to segment novel objects by refining shape
priors. In IEEE International Conference on Computer Vision (ICCV),
2019.

[90] Jean Lahoud, Bernard Ghanem, Marc Pollefeys, and Martin R Oswald.
3d instance segmentation via multi-task metric learning. In IEEE
International Conference on Computer Vision (ICCV), 2019.

[91] Kevin Lai, Liefeng Bo, and Dieter Fox. Unsupervised feature learning
for 3d scene labeling. In IEEE Conference on Robotics and Automation
(ICRA), 2014.

127

[92] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell.
Simple and scalable predictive uncertainty estimation using deep en-
sembles. In Advances in Neural Information Processing Systems (NeurIPS),
2017.

[93] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[94] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deep-
gcns: Can gcns go as deep as cnns? In IEEE International Conference on
Computer Vision (ICCV), 2019.

[95] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei. Fully con-
volutional instance-aware semantic segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[96] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. Deepim:
Deep iterative matching for 6d pose estimation. In European Conference
Computer Vision (ECCV), 2018.

[97] Xiaodan Liang, Liang Lin, Xiaohui Shen, Jiashi Feng, Shuicheng Yan,
and Eric P Xing. Interpretable structure-evolving lstm. In Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017.

[98] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian Reid. Refinenet:
Multi-path refinement networks for high-resolution semantic segmen-
tation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[99] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft
coco: Common objects in context. In European Conference Computer
Vision (ECCV), 2014.

[100] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Har-
iharan, and Serge Belongie. Feature pyramid networks for object

128

detection. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[101] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr
Dollár. Focal loss for dense object detection. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[102] Antonio Loquercio, Mattia Segu, and Davide Scaramuzza. A general
framework for uncertainty estimation in deep learning. IEEE Robotics
and Automation Letters, 5(2):3153–3160, 2020.

[103] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard
Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. Dex-net 2.0:
Deep learning to plan robust grasps with synthetic point clouds and
analytic grasp metrics. In Robotics: Science and Systems (RSS), 2017.

[104] Kevis-Kokitsi Maninis, Sergi Caelles, Jordi Pont-Tuset, and Luc
Van Gool. Deep extreme cut: From extreme points to object segmen-
tation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[105] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy,
and T. Brox. A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation. In IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[106] Sachin Mehta, Mohammad Rastegari, Anat Caspi, Linda Shapiro, and
Hannaneh Hajishirzi. Espnet: Efficient spatial pyramid of dilated con-
volutions for semantic segmentation. In European Conference Computer
Vision (ECCV), 2018.

[107] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T
Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes
as neural radiance fields for view synthesis. In European Conference on
Computer Vision (ECCV), 2020.

129

[108] Chaitanya Mitash, Rahul Shome, Bowen Wen, Abdeslam Boularias,
and Kostas Bekris. Task-driven perception and manipulation for con-
strained placement of unknown objects. IEEE Robotics and Automation
Letters, 2020.

[109] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-dof grasp-
net: Variational grasp generation for object manipulation. In IEEE
International Conference on Computer Vision (ICCV), 2019.

[110] Adithyavairavan Murali, Arsalan Mousavian, Clemens Eppner, Chris
Paxton, and Dieter Fox. 6-dof grasping for target-driven object ma-
nipulation in clutter. In IEEE Conference on Robotics and Automation
(ICRA), 2020.

[111] Manjunath Narayana, Allen Hanson, and Erik Learned-Miller. Co-
herent motion segmentation in moving camera videos using optical
flow orientations. In IEEE International Conference on Computer Vision
(ICCV), 2013.

[112] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus.
Indoor segmentation and support inference from rgbd images. In
European Conference Computer Vision (ECCV), 2012.

[113] Davy Neven, Bert De Brabandere, Marc Proesmans, and Luc Van Gool.
Instance segmentation by jointly optimizing spatial embeddings and
clustering bandwidth. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[114] David Novotny, Samuel Albanie, Diane Larlus, and Andrea Vedaldi.
Semi-convolutional operators for instance segmentation. In European
Conference on Computer Vision (ECCV), 2018.

[115] Peter Ochs, Jitendra Malik, and Thomas Brox. Segmentation of mov-
ing objects by long term video analysis. IEEE transactions on pattern
analysis and machine intelligence, 2014.

130

[116] Anestis Papazoglou and Vittorio Ferrari. Fast object segmentation
in unconstrained video. In IEEE International Conference on Computer
Vision (ICCV), 2013.

[117] Keunhong Park, Arsalan Mousavian, Yu Xiang, and Dieter Fox. La-
tentfusion: End-to-end differentiable reconstruction and rendering
for unseen object pose estimation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020.

[118] Deepak Pathak, Ross B Girshick, Piotr Dollár, Trevor Darrell, and
Bharath Hariharan. Learning features by watching objects move. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[119] Sida Peng, Wen Jiang, Huaijin Pi, Xiuli Li, Hujun Bao, and Xiaowei
Zhou. Deep snake for real-time instance segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[120] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and
A. Sorkine-Hornung. A benchmark dataset and evaluation method-
ology for video object segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[121] Trung T Pham, Thanh-Toan Do, Niko Sünderhauf, and Ian Reid. Scene-
cut: Joint geometric and object segmentation for indoor scenes. In
IEEE International Conference on Robotics and Automation (ICRA), 2018.

[122] Pedro O. Pinheiro, Ronan Collobert, and Piotr Dollár. Learning to
segment object candidates. In Advances in Neural Information Processing
Systems (NeurIPS), 2015.

[123] Pedro O. Pinheiro, Tsung-Yi Lin, Ronan Collobert, and Piotr Dollár.
Learning to refine object segments. In European Conference on Computer
Vision (ECCV), 2016.

[124] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech

131

Zaremba, and Pieter Abbeel. Asymmetric actor critic for image-based
robot learning. In Robotics: Science and Systems (RSS), 2018.

[125] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez,
Alexander Sorkine-Hornung, and Luc Van Gool. The 2017 davis
challenge on video object segmentation. arXiv:1704.00675, 2017.

[126] Ekaterina Potapova, Andreas Richtsfeld, Michael Zillich, and Markus
Vincze. Incremental attention-driven object segmentation. In IEEE-
RAS International Conference on Humanoid Robots, 2014.

[127] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[128] Charles R Qi, Or Litany, Kaiming He, and Leonidas J Guibas. Deep
hough voting for 3d object detection in point clouds. In IEEE Interna-
tional Conference on Computer Vision (ICCV), 2019.

[129] Charles R Qi, Xinlei Chen, Or Litany, and Leonidas J Guibas.
Imvotenet: Boosting 3d object detection in point clouds with image
votes. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[130] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a metric
space. In Advances in Neural Information Processing Systems (NeurIPS),
2017.

[131] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel Urtasun.
3d graph neural networks for rgbd semantic segmentation. In IEEE
International Conference on Computer Vision (ICCV), 2017.

[132] Ahmed H Qureshi, Arsalan Mousavian, Chris Paxton, Michael C Yip,
and Dieter Fox. Nerp: Neural rearrangement planning for unknown
objects. In Robotics: Science and Systems (RSS), 2021.

132

[133] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Advances in Neural Information Processing Systems (NeurIPS), 2015.

[134] Xiaofeng Ren, Liefeng Bo, and Dieter Fox. Rgb-(d) scene labeling:
Features and algorithms. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2012.

[135] Andreas Richtsfeld, Thomas Mörwald, Johann Prankl, Michael Zillich,
and Markus Vincze. Segmentation of unknown objects in indoor
environments. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2012.

[136] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In International
Conference on Medical Image Computing and Computer-Assisted Interven-
tion (MICCAI), 2015.

[137] Fereshteh Sadeghi and Sergey Levine. CAD2RL: Real single-image
flight without a single real image. In Robotics: Science and Systems(RSS),
2017.

[138] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski,
Razvan Pascanu, Peter Battaglia, and Timothy Lillicrap. A simple
neural network module for relational reasoning. In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

[139] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2008.

[140] Walter J Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and
Terrance E Boult. Toward open set recognition. IEEE transactions on
pattern analysis and machine intelligence, 35(7):1757–1772, 2012.

[141] Daniel Seita, Nawid Jamali, Michael Laskey, Ron Berenstein, Ajay Ku-
mar Tanwani, Prakash Baskaran, Soshi Iba, John Canny, and Ken

133

Goldberg. Robot bed-making: Deep transfer learning using depth
sensing of deformable fabric. arXiv preprint arXiv:1809.09810, 2018.

[142] Jean Serra. Image analysis and mathematical morphology. Academic Press,
Inc., 1983.

[143] Burr Settles. Active learning literature survey. 2009.

[144] Lin Shao, Parth Shah, Vikranth Dwaracherla, and Jeannette Bohg.
Motion-based object segmentation based on dense rgb-d scene flow.
In IEEE Robotics and Automation Letters, volume 3, pages 3797–3804.
IEEE, October 2018.

[145] Lin Shao, Parth Shah, Vikranth Dwaracherla, and Jeannette Bohg.
Motion-based object segmentation based on dense rgb-d scene flow.
IEEE Robotics and Automation Letters, 3:3797–3804, 2018.

[146] Lin Shao, Ye Tian, and Jeannette Bohg. Clusternet: 3d instance seg-
mentation in rgb-d images. arXiv preprint arXiv:1807.08894, 2018.

[147] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convo-
lutional networks for semantic segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(4):640–651, 2017.

[148] Karen Simonyan and Andrew Zisserman. Two-stream convolutional
networks for action recognition in videos. In Advances in neural infor-
mation processing systems (NIPS), 2014.

[149] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian
optimization of machine learning algorithms. In Advances in Neural
Information Processing Systems (NeurIPS), 2012.

[150] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva,
and Thomas Funkhouser. Semantic scene completion from a sin-
gle depth image. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

134

[151] Julian Straub. Nonparametric Directional Perception. PhD thesis, Mas-
sachusetts Institute of Technology, 2017.

[152] Markus Suchi, Timothy Patten, and Markus Vincze. Easylabel: A
semi-automatic pixel-wise object annotation tool for creating robotic
rgb-d datasets. In IEEE Conference on Robotics and Automation (ICRA),
2019.

[153] Narayanan Sundaram, Thomas Brox, and Kurt Keutzer. Dense point
trajectories by gpu-accelerated large displacement optical flow. In
European conference on computer vision (ECCV), 2010.

[154] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter
Fox, Jürgen Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard,
Michael Milford, et al. The limits and potentials of deep learning for
robotics. The International Journal of Robotics Research, 37(4-5):405–420,
2018.

[155] Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, and Fox
Dieter. Contact-graspnet: Efficient 6-dof grasp generation in cluttered-
scenes. In IEEE International Conference on Robotics and Automation
(ICRA), 2021.

[156] Richard Szeliski. Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[157] Brian Taylor, Vasiliy Karasev, and Stefano Soatto. Causal video object
segmentation from persistence of occlusions. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

[158] Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. Robotics
and autonomous systems, 15:25–46, 1995.

[159] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba,
and Pieter Abbeel. Domain randomization for transferring deep neu-
ral networks from simulation to the real world. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2017.

135

[160] Pavel Tokmakov, Karteek Alahari, and Cordelia Schmid. Learning
video object segmentation with visual memory. In IEEE International
Conference on Computer Vision (ICCV), 2017.

[161] Pavel Tokmakov, Karteek Alahari, and Cordelia Schmid. Learning
motion patterns in videos. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[162] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang,
Dieter Fox, and Stan Birchfield. Deep object pose estimation for
semantic robotic grasping of household objects. In Conference on Robot
Learning (CoRL), 2018.

[163] Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel,
Sergey Levine, Kate Saenko, and Trevor Darrell. Adapting deep visuo-
motor representations with weak pairwise constraints. In International
Workshop on the Algorithmic Foundations of Robotics (WAFR), 2016.

[164] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks. In
International Conference on Learning Representations (ICLR), 2018.

[165] Weiyue Wang and Ulrich Neumann. Depth-aware cnn for rgb-d
segmentation. In European Conference Computer Vision (ECCV), 2018.

[166] Wenguan Wang, Jianbing Shen, Jianwen Xie, and Fatih Porikli. Super-
trajectory for video segmentation. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 1671–1679, 2017.

[167] Xiaolong Wang, Yufei Ye, and Abhinav Gupta. Zero-shot recognition
via semantic embeddings and knowledge graphs. In Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018.

[168] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Gen-
eralizing from a few examples: A survey on few-shot learning. ACM
Computing Surveys (CSUR), 53(3):1–34, 2020.

136

[169] Yuxin Wu and Kaiming He. Group normalization. In European Confer-
ence on Computer Vision (ECCV), 2018.

[170] Yu Xiang and Dieter Fox. Da-rnn: Semantic mapping with data
associated recurrent neural networks. In Robotics: Science and Systems
(RSS), 2017.

[171] Yu Xiang, Alexandre Alahi, and Silvio Savarese. Learning to track:
Online multi-object tracking by decision making. In IEEE International
Conference on Computer Vision (ICCV), 2015.

[172] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox.
Posecnn: A convolutional neural network for 6d object pose estima-
tion in cluttered scenes. In Robotics: Science and Systems (RSS), 2018.

[173] Yu Xiang, Christopher Xie, Arsalan Mousavian, and Dieter Fox. Learn-
ing rgb-d feature embeddings for unseen object instance segmentation.
In Conference on Robot Learning (CoRL), 2020.

[174] Christopher Xie, Yu Xiang, Zaid Harchaoui, and Dieter Fox. Object dis-
covery in videos as foreground motion clustering. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[175] Christopher Xie, Yu Xiang, Arsalan Mousavian, and Dieter Fox. The
best of both modes: Separately leveraging rgb and depth for unseen
object instance segmentation. In Conference on Robot Learning (CoRL),
2019.

[176] Christopher Xie, Arsalan Mousavian, Yu Xiang, and Dieter Fox. Rice:
Refining instance masks in cluttered environments with graph neural
networks. arXiv preprint arXiv:2106.15711, 2021.

[177] Christopher Xie, Keunhong Park, Ricardo Martin-Brualla, and
Matthew Brown. Fig-nerf: Figure-ground neural radiance fields for
3d object category modelling. arXiv preprint arXiv:2104.08418, 2021.

137

[178] Christopher Xie, Yu Xiang, Arsalan Mousavian, and Dieter Fox. Un-
seen object instance segmentation for robotic environments. IEEE
Transactions on Robotics (T-RO), 2021.

[179] Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In
IEEE International Conference on Computer Vision (ICCV), 2015.

[180] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. Scene graph
generation by iterative message passing. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[181] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by
dilated convolutions. In International Conference on Learning Represen-
tations, (ICLR), 2016.

[182] Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi. Neural
motifs: Scene graph parsing with global context. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[183] Fangyi Zhang, Jürgen Leitner, Michael Milford, Ben Upcroft, and Peter
Corke. Towards vision-based deep reinforcement learning for robotic
motion control. In Australasian Conference on Robotics and Automation
(ACRA), 2015.

[184] Li Zhang, Yuan Li, and Ramakant Nevatia. Global data association
for multi-object tracking using network flows. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2008.

[185] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern
library for 3D data processing. arXiv:1801.09847, 2018.

138

	Introduction
	Computer Vision vs. Robot Vision in Today's World
	Leveraging Large-Scale Data without Manual Annotation
	Dissertation Overview

	Object Discovery in Videos as Foreground Motion Clustering
	Related Work
	Method
	Encoder-Decoder: Y-Net
	Foreground Prediction
	Trajectory Embeddings
	Loss Function
	Trajectory Clustering

	Experiments
	Ablation Studies
	Comparison to State-of-the-Art Methods

	Discussion

	Unseen Object Instance Segmentation for Robotic Environments
	Related Works
	Category-level Object Segmentation
	Instance-level Object Segmentation
	Sim-to-Real Perception

	Method
	Depth Seeding Network
	Initial Mask Processing Module
	Region Refinement Network

	Tabletop Object Dataset
	Experiments
	Implementation Details
	Datasets
	Metrics
	2D Quantitative Results
	2D Qualitative Results
	3D Quantitative Results
	3D Qualitative Results
	Quantifying Generalization from Sim to Real
	Application in Grasping Unknown Objects

	Discussion

	RICE: Refining Instance Masks in Cluttered Environments with Graph Neural Networks
	Method
	Node Encoder
	Building the Sample Tree
	Sampling Operations
	Segmentation Graph Scoring Network
	Training Procedure

	Experiments
	Implementation Details
	Datasets and Metrics
	Encoding RGB and Modality Tuning
	SOTA Improvements
	Ablation Study
	Evaluating the Usefulness of Each Sampling Operation
	SGS-Net Ranking
	Visualizing Refinements
	Failures and Limitations
	Guiding a Manipulator with Contour Uncertainties for Efficient Scene Understanding

	Discussion

	Conclusion
	Contributions
	Future Directions
	Incorporating Interaction and Self-Supervised Learning
	Better Uncertainty Estimate Representations
	Generalizing Outside of Tabletop Settings
	Connecting Actions to Segmentations
	Lifelong Learning

