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PROBLEM METHOD EXPERIMENTS

Base Tracker Model Analysis
Goal: visually track an arbitrary object over N ) 5
Hme. ) 1 A OTB-2013 OTB-100 OTB-50 FPS
F" =argmin g » oy Y, — > [Fl* Ll + S 17112 SRDCF [2] 62.6/781 59.8/728  53.9/66.6 4.3
a t=1 k=1 2 sCF - HOG 63.0/80.6  58.6/71.4  53.5/65.4 9.8
Only a single bounding box in the first frame of Vieual o - o MTCF - HOG ~ 66.0/84.1 62.7/77.5 59.0/73.2 9.6
i dan i A isual representation of the model.: sCF - HOG+CN  63.9/79.5 62.1/75.1  59.2/729 86
(he video is given. Examples P MTCF - HOG+CN 68.1?84.5 64.0?77.5 62.9;77.2 7.3

sCF - deep 67.0/83.1  65.5/79.6  62.0/75.3 2.8
MTCF - deep  68.2/85.0 65.6/80.0 63.4/77.8 2.7

Table 1: AUC and success rates are shown for each of the models.
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Difficulties: rotation, scale variation, and object
deformation, etc.
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Prior Work sty

Correlation Filters [1, 2] learn an adaptable
object template by minimizing a least squares Temporal
. . . . . Window
objective function on Fourier coefficients.
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MTCF outperforms almost all SOTA trackers
HOG+CN features perform quite strongly

Appearance [N

Issues: inappropriate size due to learning in
Fourier domain, learning a single template with |
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pproac Demonstration Competitive performance with winning trackers
A simple solution that learns a tracker directly in in both years of challenges
the spatial domain, avoiding known issues while Each row shows a different base tracker’s per- Qualltatlve Examples
allowing for off-the-shelf gradient-based convex frame confidence and appearance model. v _ |
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optimization. Red portions indicate the highest confidence. '
Around frame 260, we see that the object
Ensemble-based solution where base trackers appearance indeed is similar to that of base
are trained on different temporal windows of the tracker 1.

video history. Enables robustness to short-term
and long-term changes in appearance.

Our algorithm is denoted the Multi-Template
Correlation Filter, or MTCEF.
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