A Simple Adaptive Tracker with Reminiscenses

Christopher Xie¹, Emily Fox¹², Zaid Harchaoui²
University of Washington

¹Paul G. Allen School of Computer Science and Engineering, ²Department of Statistics

PROBLEM

- > Goal: visually track an arbitrary object over time.
- > Only a single bounding box in the first frame of the video is given. Examples:

> Difficulties: rotation, scale variation, and object deformation, etc.

Prior Work

- > Correlation Filters [1, 2] learn an adaptable object template by minimizing a least squares objective function on Fourier coefficients.
- > Issues: inappropriate size due to learning in Fourier domain, learning a single template with short memory.

Approach

- > A simple solution that learns a tracker directly in the spatial domain, avoiding known issues while allowing for off-the-shelf gradient-based convex optimization.
- > Ensemble-based solution where base trackers are trained on different temporal windows of the video history. Enables robustness to short-term and long-term changes in appearance.
- > Our algorithm is denoted the <u>Multi-Template</u> <u>Correlation Filter, or MTCF.</u>

References

[1] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, "Visual object tracking using adaptive correlation filters," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2010.

[2] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, "Learning spatially regularized correlation filters for visual tracking," in *IEEE International Conference on Computer Vision (ICCV)*, 2015.

METHOD

Base Tracker

$$F^* = \underset{F}{\operatorname{argmin}} \frac{1}{2} \sum_{t=1}^{N} \alpha_t \left\| Y_t - \sum_{k=1}^{d} [F]_k \star [I_t]_k \right\|_2^2 + \frac{\lambda}{2} \|F\|_2^2$$

> Visual representation of the model:

> Aggregated heatmap equation:

$$M = \sum_{i=1}^{L} w_i M_i, \quad w_i = \frac{|D_i|(1-\gamma)^{L-i}}{\sum_{j=1}^{L} |D_j|(1-\gamma)^{L-j}}$$

Demonstration

- > Each row shows a different base tracker's perframe confidence and appearance model.
- > Red portions indicate the highest confidence.
- > Around frame 260, we see that the object appearance indeed is similar to that of base tracker 1.

EXPERIMENTS

Model Analysis

	OTB-2013	OTB-100	OTB-50	FPS
SRDCF [2]	62.6/78.1	59.8/72.8	53.9/66.6	4.3
sCF - HOG	63.0/80.6	58.6/71.4	53.5/65.4	9.8
MTCF - HOG	66.0/84.1	62.7/77.5	$\mathbf{59.0/73.2}$	9.6
sCF - HOG+CN	63.9/79.5	62.1/75.1	59.2/72.9	8.6
MTCF - HOG+CN	${f 68.1/84.5}$	64.0/77.5	${\bf 62.9/77.2}$	7.3
sCF - deep	67.0/83.1	65.5/79.6	62.0/75.3	2.8
MTCF - deep	$\boldsymbol{68.2/85.0}$	65.6 / 80.0	63.4/77.8	2.7

Table 1: AUC and success rates are shown for each of the models.

- > Temporal ensemble boosts performance
- > Deep network features boosts performance
- > Comparable speed to state of the art

OTB

- > MTCF outperforms almost all SOTA trackers
- > HOG+CN features perform quite strongly

VOT

> Competitive performance with winning trackers in both years of challenges

Qualitative Examples

