Model-based Reinforcement Learning with Parametrized Physical Models and Optimism-Driven Exploration

Berkeley

Artificial Intelligence Research Laboratory

Christopher Xie, Sachin Patil, Teodor Moldovan, Sergey Levine, Pieter Abeel

Problem:

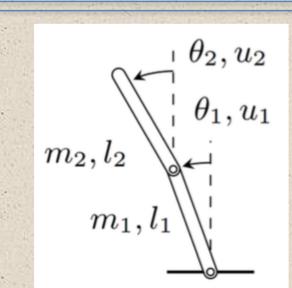
 Complete a specific robotic task without prior knowledge of the dynamics of the system

Approach:

• Employ optimistic exploration based MPC along with a simple least squares regression model that can be updated continuously with new data in real time

Assumptions:

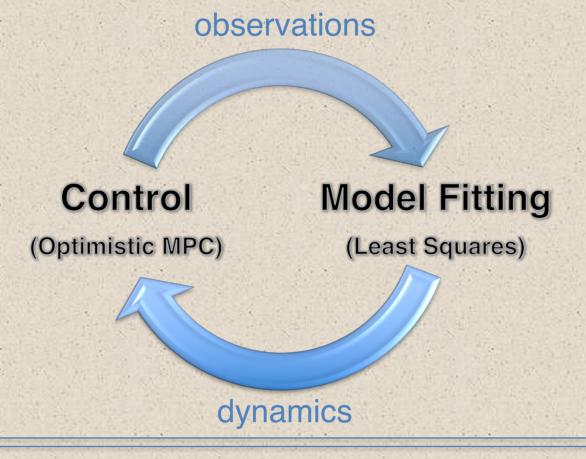
- Robot is an open-chain manipulator
- Robot morphology is known, but NOT physical parameters such as mass and length of links



Related Work:

- PILCO [Deisenroth et al. 2011]
- Optimism-driven exploration for nonlinear systems [Moldovan et al. 2015]
- Approximate real-time optimal control based on sparse Gaussian process models [Boedecker et al. 2014]

Algorithm:



Dynamics Model:

• Transform nonlinear dynamics into a simple linear model

$$M(q)\ddot{q} + C(q,\dot{q}) + g(q) = \tau$$

 $H(q,\dot{q},\ddot{q}) \cdot \Delta = \tau$

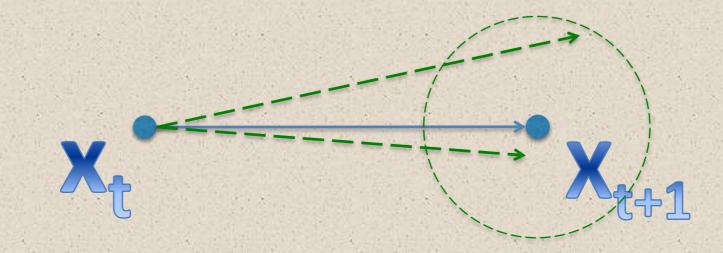
System Identification is least squares

$$\hat{\Delta} = \operatorname*{argmin} \|A\Delta - b\|_2^2 \quad A = egin{bmatrix} H(q_1, \dot{q}_1, \ddot{q}_1) \ dots \ H(q_N, \dot{q}_N, \ddot{q}_N) \end{bmatrix} b = egin{bmatrix} au_1 \ dots \ T_N \end{bmatrix}$$

Optimistic exploration encoded by dynamics slack variables

$$\ddot{q} = \hat{f}_{\Delta}(q, \dot{q}, \tau) = M_{\Delta}^{-1}(q) (\tau - C_{\Delta}(q, \dot{q}) - g_{\Delta}(q))$$

$$\ddot{q}_t = \hat{f}_{\Delta}(q_t, \dot{q}_t, \tau_t) + \xi_t = \tilde{f}_{\Delta}(q_t, \dot{q}_t, \tau_t, \xi_t)$$

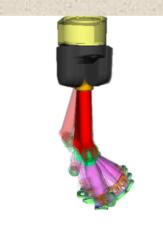


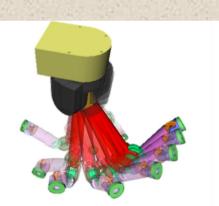
Experiments: Benchmarks

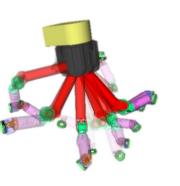
	pendulum	cartpole	double pendulum
DDP with known dynamics	$3.04 \pm 0.89s$	$7.44 \pm 3.26s$	3.7 ± 0.89 s
our method	$3.28 \pm 1.17s$	$8.31 \pm 3.15s$	$4.98 \pm 1.83s$
optimism-driven exploration [21]	$3.9 \pm 1s$	$10 \pm 3s$	$17 \pm 7s$
Boedecker et al. [9]	_	12-18s	_
PILCO [13]	12s	17.5s	50s
	•		

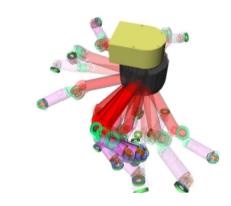
- Interaction time to successfully complete each benchmark task
- Our method is pretty competitive compared to lower bound

Experiments: 7 DOF Barrett Arm









	1		3	4	5
DDP with known dynamics	$1.43 \pm 0.03s$	$1.64 \pm 0.02s$	$1.34 \pm 0.02s$	$2.68 \pm 0.84s$	$1.57 \pm 0.03s$
our method	5.84 ± 2.76 s	$9.11 \pm 3.4s$	$10.9 \pm 4.62s$	$9.14 \pm 6.22s$	$3.61 \pm 1.12s$
target pose:	6	7	8	9	10
DDP with known dynamics	$2.05\pm0.0{ m s}$	$0.35 \pm 0.09s$	$1.9 \pm 0.0s$	$2.65 \pm 0.0s$	$4.98 \pm 3.32s$
our method	6.15 ± 2.64 s	$4.6\pm2.35\mathrm{s}$	$3.71 \pm 1.34s$	$7.77\pm2.36\mathrm{s}$	$9.99 \pm 4.49s$

- Interaction time to successfully reach each target pose
- Again, our method is competitive compared to lower bound

Future Work:

- Evaluate our approach on a real system with unmodeled effects
- Combine our linear model with more sophisticated statistical models