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Abstract— Correlation filters have provided exceptional re-
sults in the field of visual object tracking in the past few
years. However, these methods typically learn a single filter
to be robust to many different appearance changes, which can
be challenging. We propose a simple solution to this problem
by utilizing an ensemble method of base trackers trained on
different temporal windows of the video history. The proposed
tracker, called MTCF, exhibits the following features: i) it can be
trained using gradient-based convex optimization; ii) it is robust
to short-term and long-term changes in visual appearance.
MTCF performs on par with or outperforms state-of-the-art
trackers on the OTB and the VOT benchmark datasets. We
present an extensive analysis of the performance of MTCF on
these benchmark datasets.

I. INTRODUCTION

Visual tracking is a very important topic in robotic percep-
tion. Robots must be able to perceive and track manipulable
objects, humans, and much more in order to understand the
state of the world. In unknown environments, robots must be
able to quickly learn to track potentially never-before-seen
objects, which will allow them to perform fully autonomous
tasks. This brings us to the problem of generic visual object
tracking of a single arbitrary object. The task is to estimate
the trajectory of the object throughout a video, given only
a single ground truth bounding box in the first frame. The
tracking algorithm must robustly estimate the trajectory of
this bounding box throughout the video. Generic visual object
tracking is difficult due to the changes in the object appearance
such as rotation, scale variation, and deformation [1], [2].

In order to robustly track potentially never-before-seen
objects, many approaches utilize the single ground truth
bounding box to learn an appearance model, which they
update in an online fashion as they track the object through
the video. This allows the algorithm to adapt to changes in
the appearance due to factors such as illumination variation,
rotation, and deformation. A common family of methods
that implements this approach is that of correlation filters.
Popularized by the MOSSE (minimum output sum of squared
errors) correlation filter [3], these methods operate by learning
an object template by minimizing a least squares objective
function on Fourier coefficients. At each frame, the learned
template is applied to detect the object and the predicted
object location is used to update the template. Because these
algorithms operate in the Fourier domain, they allow for
tracking at real-time speeds. Much progress has been made in
advancing these correlation filters to include multiple channels
[4], spatial regularization [5], and deep features [6], [7].

However, these correlation filter approaches contain a
number of issues. For example, because the template is
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Fig. 1: Visual description of MTCF. The colored bars indicate
the temporal windows that the base trackers are trained
on. Each tracker models the dominant appearance variation
relevant to its portion. At a new frame, the responses generated
by each tracker is aggregated via a weighted combination in
order to produce the final sharp response as shown.

learned in the Fourier domain, the size of the object template
is required to be the same as the search image, which is
undesirable as the object is likely smaller. [5] proposes
a method to fix this issue, but results in a complicated
learning algorithm and loss in efficiency. Additionally, these
approaches often aggregate the images over time [3] to learn
a single template that slowly adapts to changes in appearance.
Learning a single template with short memory can easily
result in significant loss of performance. Such strategies are
not designed to handle rapidly changing object appearances.

In this paper, we address these issues by proposing a
simple correlation-filter-type visual object tracker with two
components. First, we learn a single tracker over a short
temporal window directly in the spatial domain. This allows
the template to be appropriately sized, and the use of off-
the-shelf gradient-based convex optimization. Furthermore,
we propose an ensemble method that utilizes base trackers
trained on different temporal windows, which we denote
the Multi-Template Correlation Filter (MTCF). The pro-
posed approach admits a pleasant simplicity and modular-
ity while demonstrating performance that is comparable
to state-of-the-art methods for visual object tracking. We
demonstrate the effectiveness of MTCF by performing an
extensive analysis on multiple datasets [9], [1], [2]. The code
is publicly available online at https://github.com/
chrisdxie/reminiscent_tracker.

https://github.com/chrisdxie/reminiscent_tracker
https://github.com/chrisdxie/reminiscent_tracker


II. RELATED WORK

a) Correlation Filters: Correlation Filters are a popular
family of models used for visual object tracking. The MOSSE
filter, introduced in [3], was one of the first works to
demonstrate the efficacy of applying correlation filters to
visual object tracking, running at high speeds on the order
of hundreds of frames per second. These methods formulate
a least squares problem in the Fourier domain to learn a
filter from from all circular shifts of the image. Subsequent
works have extended this idea to include multiple channels
[4], [10], scale estimation [11], and deep features [6], [7],
[12], [13], [14]. Learning in the Fourier domain allows the
resulting formulations to leverage the Convolution Theorem
for efficiency; however, this requires the object template to
be the same size as the search image. This causes the object
template to be prone to overfitting to background noise, thus
remedies have been proposed in the literature [15], [5]. We
instead provide a simple formulation in the spatial domain
that avoids these issues and consider appropriately sized filters
while still providing fast and accurate tracking predictions.

b) Ensemble Methods in Tracking: Ensemble methods
have successfully been used in tracking to handle object
appearance variations. Nam et al. [16] manage an ensemble
of convolutional neural networks (CNNs) in a tree structure,
ranking among the top trackers in the VOT2016 competition
[2]. Zhang et al. [17] keeps a history of “snapshots” of SVM-
based trackers and uses an entropy minimization method to
select the best tracker. Multi-template methods have been
used in sparse methods as a means to model diversity in
appearance [18], [19]. Similarly, Nam et al. [20] maintains
a set of representative frames that inform prediction at each
frame. Several methods have utilized methods (e.g. boosting
methods) in order to combine weak classifiers into a strong
tracker [21], [22], [23]. In contrast to these methods, MTCF
explicitly maintains models of different temporal windows
of the video history.

c) CNN-based Trackers: As CNNs have achieved ex-
ceptional results in the realm of image recognition [24], many
tracking algorithms have adopted both the network structures
and the learned feature representations from such networks.
Nam et al. [25], the winning entry from the VOT2015
competition [26], proposed a multi-domain CNN where each
head of the network corresponds to a different video. Siamese
networks combined with correlation filter layers have also
been shown to perform well in visual object tracking [27],
[28], [29]. Trackers such as [30], [31], [25], [32] utilize
external tracking data in an offline training stage. Many
state-of-the-art approaches [12], [13] show impressive results
by leveraging discriminative intermediate outputs of deep
networks such as VGG [33], [34].

III. SPATIAL CORRELATION FILTER

In this section, we describe a simple base tracker, denoted
the spatial correlation filter (sCF). We discuss the difference
of the proposed setup with the standard correlation filter
setup.

A. Formulation
Let F ∈ Rhf×wf×d be an object filter (synonymous to

template) where d is the number of channels and hf , wf is
the height and width of the filter, respectively. We learn F in
an online fashion that mimics the standard correlation filter
setup [3]. In particular, we solve the problem

F ∗ = argmin
F
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where ? denotes zero-padded convolution. Here, Yt ∈ Rh×w
is a desired response function, It ∈ Rh×w×d is the tth image,
[It]k is the kth channel of It, αt ∈ R is the weight for image
t, N is the number of images in the training set, and λ is the
regularization parameter. The filter F is typically smaller in
size than the image It, i.e. hf < h,wf < w, which allows
for the filter to be appropriately sized based on the object.
Following the correlation filter framework, Yt is a Gaussian
peaked at the center of the map, It is always a cropped image
patch (sometimes called a search region), and αt are chosen
such that it allows for the most recent images to be more
heavily weighted than the past images.

This objective function is a convex function and can be
efficiently solved by methods such as gradient descent. In all
of our experiments, we opt to use L-BFGS with backtracking
line-search [35] as it is quite efficient and does not require
the user to supply parameters such as step size.

a) Online Learning and Tracking: In the paradigm of
short-term single object tracking [9], [1], [2], the tracking
algorithm is only provided the initial frame and the corre-
sponding ground truth bounding box. To update the filter in
an online fashion, we employ the standard online learning
approach for visual object tracking: at frame 1, we start off
with the single datapoint provided (i.e. N = 1). At each
subsequent frame, we predict translation by computing the
response map

∑d
k=1 [F ]k ? [It]k at a search region centered

at the previously predicted location, followed by selecting the
location of the maximum. We then treat that prediction as
ground truth and incorporate this new frame into the training
set and re-solve Eq. (1). This allows for the filter F to be
robust to multiple appearance variations of the object.

B. Relation to Standard Correlation Filters
Standard correlation filters [3] can be recovered by setting,

hf = h,wf = w. In this setting, Eq. (1) can be efficiently
solved in the Fourier domain by utilizing Parseval’s theorem,
FFTs, and the Circular Convolution Theorem [3], which
involves circular convolution. However, this requires the
object filter to be inappropriately sized; these methods
effectively learn to model the background and are plagued
with boundary effects [5]. Several works have proposed
solutions to this that involve complicated algorithms [15],
[5] at a reduced efficiency. Instead, the simplistic proposed
formulation circumvents these issues by learning in the spatial
domain. Although we lose efficiency, we show in Section
V-C that sCF still provides fast and accurate predictions. Note
that as we encounter more frames, we continually grow the



Fig. 2: A real demonstration of how MTCF recognizes past
appearances on the basketball sequence. Each row shows a
different base tracker’s confidence si, with the left column
showing the it’s appearance model. The red portions of
si indicate that Ci exhibits the highest confidence at that
frame. Around frame 260, we see that the object appearance
(represented by frames on bottom) indeed is similar to that
of C1 (top row). Best viewed in color on a computer screen.

training data, thus N in Eq. (1) increases. This is in contrast to
typical correlation filters that learn from one training sample
I∗ only, and aggregate observations at the tth frame in an
exponential fashion: I∗ = (1− η)I∗ + ηIt.

In addition to these advantages, by learning in the spatial
domain, we can consider arbitrary loss functions. As long
as the function is differentiable, we can solve adapted
versions of Eq. (1) with auto-differentiation and gradient-
based optimization methods. Thus, loss functions are more
flexible when learning in the spatial domain. For example,
using a tool such as TensorFlow [36], one could potentially
specify any differentiable function h(F, It) in place of∑d
k=1 [F ]k ? [It]k and take advantage of auto-differentiation

to calculate gradients for optimization. Other ideas can be
seamlessly integrated into the formulation.

IV. MULTI-TEMPLATE CORRELATION FILTER

While correlation filters have enjoyed strong performance
in tracking, they are often limited to learning a single rigid
filter, which is not ideal when tracking objects exhibiting
appearance variations. To remedy this, we propose a simple
algorithm denoted the Multi-Template Correlation Filter
(MTCF). MTCF maintains a collection of base trackers trained
on different temporal windows. While any tracker can be
employed as a base tracker, we use sCF from Section III for
performance and efficiency. To perform tracking, a response
map is generated by aggregating the response maps of the
individual base trackers with a weighted combination that
allows for the proposed tracker to realize new appearances
yet be robust to the old ones. Figure 1 provides a visual
description of MTCF. We discuss the details below.

A. Ensemble Details

MTCF maintains a collection of base trackers trained on
different temporal windows of the video history in order to
model different object appearances. Specifically, it maintains
a collection of L base trackers denoted C := {Ci}Li=1, each

Algorithm 1 MTCF

Require: Collection of trackers C = {Ci}Li=1, image I ,
previous location pt−1

1: Crop search region It from I centered at pt−1

2: for i = 1, . . . , L do
3: Compute response map Mi =

∑d
k=1 [Fi]k ? [It]k for

tracker Ci
4: end for
5: Compute aggregated response map using Eq. (2) and

predict location pt
6: if |DL| ≥ T then
7: Initialize a new tracker CL+1 using It−τ+1, . . . , It
8: C = C ∪ CL+1

9: Set C = C \ C1 if L+ 1 > K
10: else
11: DL = DL ∪ {It}
12: Update CL by solving Eq. (1)
13: end if

of which are trained on up to T consecutive images and
their corresponding ground truth response maps. We limit the
number of base trackers to be K. Each tracker Ci is an sCF
trained on a dataset Di such that |Di| ≤ T . The trackers are
trained in an order such that Di, i = 1, . . . , L are consecutive
temporal windows with minimal overlap. This allows each
base tracker to model the dominant appearance variation
present in Di. D1, . . . , DL are selected such that Di is a
consecutive set of images with Di having older frames than
Di+1 and |Di ∩Di+1| = τ , where τ is an overlap parameter.
See Figure 1 for a visual description of the division of the
video history.

Translation prediction for MTCF is computed by selecting
the argmax over a response map at each frame. The response
map is generated by aggregating the individual response maps
of the base trackers Ci. Denote Mi =

∑d
k=1 [Fi]k ? [It]k to

be the response map of base tracker Ci, where Fi is the filter
for base tracker Ci. Then the MTCF response map M is
computed as

M =

L∑
i=1

wiMi (2)

where wi ∈ R is the weight of tracker Ci. We would like to
weight the latest trackers more heavily as object appearances
they model are more likely to be relevant to the current frame.
Although most trackers have T images, CL almost never has
T images (see Section IV-B) and in general is not as reliable
as the other trackers. Taking this into consideration, we set
the weights to be

wi =
|Di|(1− γ)L−i∑L
j=1 |Dj |(1− γ)L−j

(3)

where γ ∈ (0, 1) is the tracker decay rate that allows more
recent trackers to be more heavily weighted. However, γ must
be set such that the older trackers are not insignificant.

MTCF explicitly models the object’s appearance history



OTB-2013 OTB-100 OTB-50 FPS
SRDCF [5] 62.6/78.1 59.8/72.8 53.9/66.6 4.3
sCF - HOG 63.0/80.6 58.6/71.4 53.5/65.4 9.8

MTCF - HOG 66.0/84.1 62.7/77.5 59.0/73.2 9.6
sCF - HOG+CN 63.9/79.5 62.1/75.1 59.2/72.9 8.6

MTCF - HOG+CN 68.1/84.5 64.0/77.5 62.9/77.2 7.3
sCF - deep 67.0/83.1 65.5/79.6 62.0/75.3 2.8

MTCF - deep 68.2/85.0 65.6/80.0 63.4/77.8 2.7

TABLE I: Detailed study comparing sCF and MTCF. AUC
and success rates are shown for each of the models.

as the ensemble of base trackers models varying object
appearances at separate time segments in the video. When
performing tracking, the older trackers allow MTCF to be
robust to previously seen appearance variations. Denote the
confidence of a tracker Ci to be si := maxxy [Mi]xy . If si of
a tracker is large, it will contribute heavily to the translation
prediction. See Figure 2 for a real example of this. This is in
contrast to typical correlation filter algorithms which are not
designed to handle detection of older appearance models. In
addition, because the base trackers are trained on relatively
small temporal windows, the most recent tracker CL will be
able to quickly adapt to new object appearances as it has
been trained on the most recent images, allowing MTCF to
quickly learn and track newer appearances. In section V, we
show that this algorithm results in improved performance
compared to the sCF, which simply updates its filter over
time in hopes of learning these appearance changes on the
fly as most correlation filters do.

An alternative approach to computing a weighted average is
to select the top tracker based on si. However, this approach is
less robust to temporary changes in appearance. For example,
if the tracked object is occluded when CL is created, CL will
model the occluding object and track it with high confidence.
We experimented with such an approach and observed inferior
performance.

B. Online Learning and Tracking

The proposed algorithm for online tracking is shown in
Lines 1-5 of Algorithm 1. Given a new image I , we extract
a search region It centered at location pt−1 ∈ R2, which is
the previously predicted location (in x, y coordinates). Then
the response map M is computed with Eq. (2) and the new
location pt is predicted by selecting the argmax. Following
[11], [37], we apply this prediction at multiple resolutions of
the search region in order to estimate scale change.

Performing model updates is shown in Lines 6-13 of
Algorithm 1. If the training data of the most recent tracker
CL is at capacity, we create a new tracker CL+1. Because It
could possibly have an occluded object or be a noisy frame,
we initialize CL+1 with the τ most recent frames instead
of initializing with It. This leads to the overlaps between
Di, Di+1, ∀i as seen in Figure 1, which results in more
stable predictions. In this manner, we effectively build the
ensemble of base trackers in a sequential fashion. Thus, CL
almost never has T images, which is why we include |Di| in
the weight calculation in Eq (3). If we surpass the limit of
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Fig. 3: Sensitivity Analysis.

base trackers, we drop the oldest one (Line 9). Lastly, if CL
is not at capacity of training data, we simply add It to DL

and update CL accordingly. Note when a tracker Ci reaches
its capacity of training data, it is never updated again; thus,
the appearance that Ci models persists during tracking.

V. EXPERIMENTS

In this section, we discuss implementation details, perform
detailed studies of the proposed method, and compare with
state-of-the-art trackers on multiple datasets. All of our
experiments are run on a Intel Core i7 CPU along with
an NVIDIA Geforce GTX 1080Ti GPU. Our implementation
is written in Python and Tensorflow [36].

A. Implementation Details

We experiment with a combination of Histogram of
Oriented Gradients (HOG) [38] and Color Names (CN) [39],
and also deep convolutional features; we extract conv3-3
features from a VGG16 network [34] pre-trained on ImageNet
[40], and reduce the number of features to 100 with PCA.

For the base tracker sCF, the square search region is
set to be 52 the size of the initial target bounding box.
Yt is set to be a Gaussian density function with standard
deviation

√
hfwf/16. When initializing the tracker, we run

100 iterations of L-BFGS with backtracking line search [35].
At every 5th frame, we run 5 iterations of L-BFGS to update
the model, setting αt = (1 − η)N−t with η = 0.013 and
normalizing αt such that

∑N
t=1 αt = 1. Following [11], [37],

we apply the filter at multiple resolutions of the search region
in order to jointly predict translation and scale; we use 5
resolutions at step size 1.02.

For the proposed method MTCF, we set the maximum
number of images per tracker T = 50, which is approximately
2 seconds for the datasets we experiment with. We expect this
to be a reasonable amount of time for the object appearance
to potentially change, and show empirically in Section V-C
that this is the case. We set the maximum number of trackers
K = 8, the overlap parameter τ = 5, and the tracker decay
rate γ = 0.2.

B. Datasets and Metrics

We evaluate the proposed method on multiple standard
benchmarks for visual object tracking. We first investigate
our results on the OTB dataset [9], [1], which contains 100
videos that are separated into the OTB-2013 dataset [9] which
includes 51 videos, the OTB-100 dataset [1] which includes
all 100 videos, and the OTB-50 dataset [1] which includes
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Fig. 4: Results on OTB-2013, OTB-100, and OTB-50 datasets.

50 of the more difficult videos for a more in-depth analysis.
We evaluate on the one-pass evaluation (OPE) metric on this
dataset [9], which computes intersection over union (IoU) of
predicted and ground truth bounding boxes for a single run
on the dataset. Success plots show the percentage of frames
where the IoU is greater than a given threshold. The area
under the curve (AUC) is commonly used to rank trackers.
For these datasets, we also compare trackers on the success
rate of frames where the IoU is larger than 0.5.

We next investigate our results on the VOT2015 [26] and
VOT2016 datasets [2], which consists of 60 difficult videos.
In this evaluation, trackers are restarted upon failure, where
failure denotes the event that a predicted bounding box has
no overlap with the ground truth. Accuracy is again measured
in IoU, and the robustness metric measures the failure rate of
a tracker. The authors propose the expected average overlap
(EAO) metric [26] to summarize the performance of each
tracker in a single number.

C. Model Analysis

In this section, we perform experiments to study the nature
of MTCF. In Table I we show a comparison of sCF and MTCF
on multiple feature representations on the OTB datasets. We
show AUC and success rate for three feature representations:
(i) HOG, (ii) HOG + CN, and (iii) deep features. We also show
frames per second (FPS) of the trackers averaged over the
OTB100 videos. We see that MTCF improves over sCF in all
settings with a relative gain of 4.7% on average, showing the
efficacy of having an ensemble trained on different temporal
windows. Interestingly, the smallest gains of MTCF are
on the deep convolutional feature representation where the
relative gain is 1.4% on average. Note that MTCF is slightly
slower than sCF as it maintains a collection of up to K base
trackers and must compute translation prediction for all of
them. Finally, we compare to SRDCF [5], a state-of-the-art
correlation filter (using HOG features) equiped with a spatial
regularization term to deal with the inappropriately sized filter.
The simple base tracker sCF - HOG admits a comparable
learning framework with a much simpler learning algorithm
and provides similar results at twice the speed.

We test the sensitivity of MTCF to the choice of T and
K. We fix TK = 400 and vary K in [2, 4, 8, 16, 20] with
T ranging in [200, 100, 50, 25, 20]. We initialize each tracker
with τ = T/10 images and use HOG + CN features. In Figure

3, we see a consistent trend where performance increases until
K = 8, T = 50, and decreases afterwards. When K is large,
the trackers are trained on smaller amounts of data, resulting
in unstable trackers and degradation of performance. Note
that the optimal choice of T,K depends on the distribution
of object appearance variations in the dataset.

D. Comparison to state of the art

We provide thorough comparisons of the proposed tracker
on deep features (MTCF-deep) and HOG + CN features
(MTCF-HOG+CN). We compare our performance to many
recent state-of-the-art trackers and show that MTCF either
performs on par with or outperforms them.

1) OTB: We evaluate the proposed tracker MTCF on the
OTB datasets [9], [1]. We compare to the trackers provided
with the OTB toolkit, along with recently proposed state-
of-the-art correlation filters including ECO [13], C-COT
[12], MCPF [42], BACF [15], SRDCF [5], and Staple [8].
Furthermore, we include state-of-the-art deep learning based
trackers including CREST [41] and SiamFC [27] in the
comparison. Note that some of the correlation filter trackers
(e.g. ECO, C-COT, MCPF) operate on features extracted from
pre-trained deep networks (e.g VGG [34]) on ImageNet [40].

Figure 4 shows OPE AUC results of the trackers on all
three OTB datasets. For succinctness, the performance of
only the top 10 trackers is shown. Among these top 10
trackers, MTCF performs quite competitively, only being
beaten by ECO. Note that while ECO is a state-of-the-art
correlation filter, it only learns a single filter which puts it
at risk of issues mentioned in Section IV (see Section V-
E for an example on the Basketball video). Both versions
of MTCF outperform most of the correlation filter based
methods. MTCF-deep achieves a relative gain of 4.65%,
6.78%, 12.1%, and 17.8% over MCPF, BACF, SRDCF, and
Staple, respectively. While the proposed method falls behind
C-COT by a couple AUC points on OTB100, we outperform
it by a couple AUC points on OTB50 where the videos are
among the more difficult videos for tracking [1]. We also
outperform deep learning based trackers CREST and SiamFC
by similar margins. Interestingly, the HOG+CN version of
MTCF performs only slightly worse than the deep feature
version and still outperforms trackers utilizing deep features
including MCPF and CREST. MTCF-deep provides a 1.1%
relative gain in accuracy over MTCF-HOG+CN on average.
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Fig. 5: Qualitative results of MTCF with ECO [13], CREST [41], BACF [15], and SRDCF [5] on videos Basketball, CarScale
and DragonBaby on the OTB100 dataset.

Tracker EAO Acc. Rob.
MTCF-d (Ours) 0.342 0.551 0.867

MTCF-HC (Ours) 0.292 0.544 1.233
MDNet[25] 0.378 0.594 0.766

DeepSRDCF[6] 0.318 0.562 1.000
EBT[43] 0.313 0.453 0.814

SRDCF[5] 0.288 0.551 1.183
Struck[44] 0.246 0.460 1.496

S3Tracker[26] 0.240 0.523 1.667
DAT[45] 0.224 0.480 1.883

MEEM[17] 0.221 0.499 1.783

(a) VOT2015

Tracker EAO Acc. Rob.
MTCF-d (Ours) 0.316 0.517 0.933

MTCF-HC (Ours) 0.279 0.530 1.250
C-COT[12] 0.331 0.526 0.850
TCNN[16] 0.325 0.539 0.959
Staple[8] 0.295 0.538 1.350
EBT[43] 0.291 0.441 0.900

MDNet_N[2] 0.257 0.533 1.204
SRDCF[5] 0.247 0.523 1.500
DSST[11] 0.181 0.484 2.517
Struck[44] 0.142 0.424 3.367

(b) VOT2016

TABLE II: Results on VOT2015 (left) and VOT2016 (right).
The winning trackers as described by the VOT reports are
highlighted in red. Higher is better for EAO and Accuracy
while lower is better for Robustness.

2) VOT: We compare to the trackers provided with the
VOT2015 results including MDNet [25], DeepSRDCF [6],
EBT [43], SRDCF [5], Struck [44], DAT [45], and MEEM
[17] in Table IIa. The winning tracker, MDNet, is the only
tracker to outperform MTCF. It utilizes external tracking data
to train its convolutional network. Despite not having this,
MTCF-deep performs competitively, yielding an EAO score
of 0.342, and outperforms the next best tracker, DeepSRDCF,
by a relative gain of 7.5%. The HOG+CN version of MTCF
also performs competitively, ranking 4th (excluding MTCF-
deep) among the trackers with an EAO score of 0.292,
outperforming SRDCF, Struck, S3Tracker, DAT, and MEEM.

In Table IIb, we compare the proposed method on the
VOT2016 dataset to trackers including C-COT [12], TCNN
[16], Staple [8], SRDCF [5], DSST [11], and Struck [44].
MTCF-deep, with an EAO score of 0.316, performs quite
competitively with the winning tracker C-COT and second
best tracker TCNN. In fact, MTCF-deep yields 2.7% drop in
the number of failures compared to TCNN. MTCF-HOG+CN

results in an EAO score of 0.279, which outperforms SRDCF,
DSST, Struck, and even deep learning methods such as
MDNet_N. Note that MDNet_N does not have access to
external tracking data for training. MTCF-HOG+CN (and
MTCF-deep) is state of the art as defined by the VOT2016
rules [2].

E. Qualitative Results

In Figure 5, we show some qualitative plots of the proposed
tracker (with deep features) compared to a few other trackers
on a few videos from the OTB100 dataset. As seen in
Figure 2 and 5, MTCF is capable of learning the different
appearance models on Basketball and reliably tracks the object
through the video, where two methods (ECO and BACF) fail
towards the end due to an appearance change. MTCF also
shows robustness to large scale change on CarScale. On
DragonBaby, it performs well visually in comparison with
the other state-of-the-art trackers.

VI. CONCLUSION

We proposed a simple ensemble tracker that maintains
multiple base trackers trained on different temporal windows,
making it robust to short-term and long-term changes in visual
appearance. Our base trackers use a flexible correlation filter
formulation in the spatial domain that circumvents known
issues addressed in the literature. Extensive experiments
on multiple datasets demonstrate that our tracker performs
competetively with state-of-the-art methods.

ACKNOWLEDGEMENTS

This work was funded in part by an NDSEG fellowship,
ONR Grant N00014-15-1-2380, NSF Award CCF-1740551,
and the program “Learning in Machines and Brains” of
CIFAR.



REFERENCES

[1] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 37,
no. 9, pp. 1834–1848, 2015.

[2] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder,
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