
An Online Prediction Framework for Non-Stationary Time Series

Christopher Xie Avleen Bijral Juan Lavista Ferres
University of Washington

chrisxie@cs.washington.edu
Microsoft

avbijral@microsoft.com
Microsoft

jlavista@microsoft.com

Abstract

We extend an online time series prediction
algorithm for ARMA processes to describe a
framework for time series prediction that can
efficiently handle non-stationarities that exist
in many real time series. We show that ap-
propriate transformations to such time series
can lead to theoretical and empirical gains.
To account for the phenomenon of cointe-
gration in the multivariate case, we present
a novel algorithm EC-VARMA-OGD that
estimates both the auto-regressive and the
cointegrating parameters. Relaxing the as-
sumptions for the analysis, we prove a sub-
linear regret bound for all the methods de-
scribed. We note that the theoretical guaran-
tees do not provide a complete picture, thus
we provide a data-dependent analysis of the
follow-the-leader algorithm for least squares
loss that explains the success of using non-
stationary transformations. We support all
of our results with experiments on simulated
and real data.

1 Introduction

In the analysis of time series, AutoRegressive Mov-
ing Average (ARMA) models [5, 2, 6] are simple and
powerful descriptors of weakly stationary processes.
As such, they have found tremendous application in
many domains including linear dynamical systems,
econometrics, and forecasting resource consumption
[5]. They continue to be of immense practical use,
especially due to the proliferation of sensors/devices
generating time dependent data.

Despite a large amount of literature on model esti-

Preliminary work. Under review by AISTATS 2017. Do
not distribute.

mation and prediction for these models, most of it re-
mains within the confines of the statistical assumption
of Gaussianity. Such assumptions are often unrealistic
[15] and lead to poor prediction performance. More-
over, since the noise sequence is not known beforehand,
standard methods of ARMA estimation rely on con-
ditional likelihood estimation. These methods usually
lead to nonlinear estimation problems and only hold
for Gaussian residual sequences and the least squares
loss.

In the setting of streaming or high-frequency time se-
ries, one would ideally like to have methods that up-
date the model, predict sequentially, and do not rely
on any restricting assumptions on the noise sequence
or the loss function. This brings attention to the
paradigm of online learning [3]. In that vein, Anava
et al. [1] recently presented online gradient and Newton
methods (ARMA-OGD and ARMA-ONS) for ARMA
prediction. Using a truncated auto-regressive (AR)
representation of an ARMA process, the authors pro-
vide online ARMA prediction algorithms with sublin-
ear regret, where the regret is with respect to the best
conditionally expected one-step ARMA prediction loss
in hindsight (See [1] for more details).

Anava et al. [1] make no assumption about the sta-
tionarity of the generating ARMA process and only as-
sume a bound on the `1-norm of the coefficients of the
moving average part. However we will see in the em-
pirical results section that the performance of ARMA-
OGD suffers in the presence of seasonality and/or
trends which are very common in real time series [5].
In this paper, we present a general framework for on-
line time series prediction and show that adjusting the
data for known characteristics such as trends/season-
ality can lead to significant empirical and some the-
oretical gains. Additionally, we extend this general
framework for vector time series to provide extensions
for VARMA processes [16, 12]. More precisely, we
provide an algorithm for prediction in potentially non-
stationary vector valued time series generated by error
corrected VARMA (EC-VARMA) processes. Estimat-
ing EC-VARMA models are non-trivial in general and

mailto:chrisxie@cs.washington.edu
mailto:avbijral@microsoft.com
mailto:jlavista@microsoft.com

Manuscript under review by AISTATS 2017

we provide an efficient algorithm that simultaneously
estimates both the error correcting and the VARMA
matrix parameters. Please see [16] for more details on
error corrected models.

Our regret guarantees and that of [1, 10] do not com-
pletely explain why the convergence for these online
prediction methods is faster for seasonal/trend ad-
justed data. We conjecture that these bounds are miss-
ing data-dependent terms that capture correlations in-
herent in many real time series (e.g. with seasonalities
and trends). To give a flavor of what a satisfactory
data dependent regret bound might look like, we ana-
lyze the regret for the Follow-The-Leader (FTL) algo-
rithm in the case of least squares loss and show that
these bounds depend on a data dependent term and
can be compared across the different spectrum of real
time series (stationary/trend/seasonal etc).

1.1 Contributions

Our contributions in this paper can be highlighted as
follows:

1. We provide a general framework for time series
prediction using Online Gradient Descent (OGD)
that allows for appropriate modifications to real
time series before making a prediction. Such
transformations often result in good empirical
convergence properties.

2. Our regret analysis only requires invertibility of
the moving average polynomial (See [5] for a dis-
cussion of invertibility), while the assumptions
in [1] and [10] are less natural. Moreover, we
don’t require an upper bound on the data as non-
stationary data can be unbounded.

3. We also provide a non-trivial online algorithm for
potentially non-stationary vector valued time se-
ries. This algorithm, refered to as EC-VARMA-
OGD, updates both the error correcting and other
parameters of the model before making a predic-
tion using online gradient descent.

4. To highlight the effect of the these transforma-
tions, we a prove a data dependent regret guar-
antee for FTL (for least squares loss) that re-
veals why adjusting for non-stationarities can give
faster convergence.

Note that we can easily extend our algorithms and
analysis for the online Newton step method of [1] .
But for simplicity and efficiency, we limit our analysis
to OGD.

2 Preliminaries: Time Series
Modeling

In this section, we provide a summary of time series
models and other related concepts explored and built
upon in our work. For an introduction to online con-
vex optimzation and online gradient descent, please
see [14, 17, 7].

2.1 Notation

A time series is an ordered sequence of observations
{xt}t∈Z. We denote xt ∈ R as a univariate time se-
ries. Let L denote the lag operator, i.e. Lxt = xt−1.
We define ∆xt = xt − xt−1 to be a non-seasonal dif-
ferencing operator and ∆sxt = xt − xt−s to be a sea-
sonal differencing operator. These differencing opera-
tors can be compounded: ∆2xt = (∆xt − ∆xt−1) =
xt − 2xt−1 + xt−2.

2.2 SARIMA Processes

Time series exhibiting seasonal patterns can be mod-
eled by Seasonal AutoRegressive Integrated Moving
Average (SARIMA) Processes. SARIMA(p, d, q) ×
(P,D,Q)s processes are described by the following
equation:

φ(L)Φ(Ls)∆d∆D
s xt = θ(L)Θ(Ls)εt (1)

where φ(L) = 1 −
∑p
i=1 φiL

i, θ(Ls) = 1 +
∑q
i=1 θiL

i,

Φ(Ls) = 1−
∑P
i=1 ΦiL

is,Θ(Ls) = 1 +
∑Q
i=1 ΘiL

is and
φ,Φ, θ,Θ ∈ R. φ(L) and θ(L) are the non-seasonal au-
toregressive (AR) and moving average (MA) lag poly-
nomials, respectively. Similarly, Φ(Ls) and Θ(Ls) are
the seasonal AR and the seasonal MA lag polynomials,
respectively.

SARIMA processes explicitly model trend and sea-
sonal non-stationarities by assuming that the differ-
enced process ∆d∆D

s xt is an ARMA process with
AR lag polynomial φ(L)Φ(Ls) and MA lag polyno-
mial θ(L)Θ(Ls). We denote the order of the AR and
MA lag polynomials as la and lm, respectively. For
SARIMA(p, d, q) × (P,D,Q)s processes, Eq. 1 gives
us that la = p+ Ps and lm = q +Qs.

If the MA lag polynomial has all of its roots outside of
the complex unit circle, then the SARIMA process is
defined as invertible. Let βi be the scalar coefficients
of the MA lag polynomial. Invertibility is equivalent

Manuscript under review by AISTATS 2017

to saying that the companion matrix

F =

−β1 −β2 −βlm
1 0 0

0 1 0 . . .
...

... 0
. . .

. . .
...

0
...

... 1 0

(2)

has eigenvalues less than 1 in magnitude. If this is
the case, then the underlying ARMA process ∆d∆D

s xt
can be written as an AR(∞) process. If invertibil-
ity holds, then the underlying ARMA process can be
approximated quite well with an AR process by trun-
cating the infinity to a large finite number.

A key point to note is that a SARIMA(p, d, q) ×
(P,D,Q)s process can be viewed as an ARIMA(p +
Ps+Ds, d, q +Qs) process with AR lag polynomial
θ(L)Θ(Ls)(1−Ls)D. Likewise, a SARIMA process can
also be viewed as an ARMA(p+Ps+Ds+ d, q+Qs)
process with AR lag polynomial θ(L)Θ(Ls)(1−L)d(1−
Ls)D. A SARIMA process is ARIMA process with
structure, and is an ARMA process with additional
structure. ARMA processes are the most general of
the family.

2.3 VARMA Processes

Vector AutoRegressive Moving Average (VARMA)
processes provide a parsimonious description of mod-
eling linear multivariate time series. Let xt, εt ∈
Rk,Φi ∈ Rk×k,Θi ∈ Rk×k. A VARMA(p, q) process
is described by:

xt =

p∑
i=1

Φixt−i +

q∑
i=1

Θiεt−i + εt (3)

which can also be written in lag polynomial form:

Φ(L)xt = Θ(L)εt (4)

with Φ(L) = I −
∑p
i=1 ΦiL

i,Θ(L) = I +
∑q
i=1 ΘiL

i.
The requirements for invertibility are very similar to
the univariate case. We require that det (Θ(L)) must
have all of its roots outside of the complex unit circle.
Again, this is equivalent to saying that the companion
matrix has eigenvalues less than 1 in magnitude [12,
16]. If the process is invertible, then it can be rewritten
as a VAR(∞) process.

2.4 EC-VARMA Model

In many cases, a collection of time series may follow
a common trend. This phenomenon, known as coin-
tegration, is ubiquitous in economic times series [16].

Formally let xt be described by Eq. 3. Then xt is coin-
tegrated if ∆xt is stationary and there exists a vector
µ ∈ Rk such that µᵀxt is a stationary process. If xt is
cointegrated, then we can rewrite the original VARMA
representation of xt as

∆xt = Πxt−1 +

p−1∑
i=1

Γi∆xt−i +

q∑
i=1

Θiεt−i + εt (5)

where Π = −Φ(1) is low rank, and Γj = −(Φj+1+. . .+
Φp) for j = 1, . . . p − 1. Eq. 5 is known as an Error-
Corrected VARMA (EC-VARMA) model. Note that
this looks like a VARMA(p − 1, q) process in the dif-
ferenced series ∆xt, except that there is the error-
correction term Πxt−1. See [12, 16] for more details.

This family of models is the multivariate analogue of
the ARIMA model. However, differencing in multi-
variate time series means something else entirely and
thus we must consider the notion of error correction
models. We refer the reader to [16] for a discussion of
this issue.

3 Online Time Series Prediction
Framework

In this section we present an algorithmic framework
for online time series prediction based on the ARMA-
OGD algorithm presented in [1], which also includes
the extension to trend non-stationarities as presented
as ARIMA-OGD in [10].

Precisely, we show that time series with certain char-
acteristics (such as a trend or seasonality) can be ap-
propriately transformed before prediction to give bet-
ter theoretical and empirical results. To this end, we
present a unified template for time series prediction
using OGD that allows for prediction of transformed
time series. We will show that the choice of the trans-
formation, dependent on the underlying data genera-
tion process (DGP), can lead to improved constants
in the regret guarantee, partially explaining why these
transformations lead to better empirical performance.

This framework includes some of the commonly used
transformations of seasonal and non-seasonal differ-
encing [5]. Table 1 shows the explicit form of of such
transformations.

3.1 TSP-OGD

We assume the following for the remainder of this sec-
tion:

U1) xt is generated by a DGP such that there ex-
ists a transformation τ(xt) which is an invertible

Manuscript under review by AISTATS 2017

Algorithm 1 TSP-OGD Framework

Require: DGP parameters la, lm. Horizon T . Learn-
ing rate η. Data: {xt}. Transformation τ . Inverse
Transformation ζ.

1: Set M = logλmax

((
2κTLMmax

√
lm
)−1
)

+ la

2: Transform xt to get τ(xt).
3: Choose γ(1) ∈ E arbitrarily.
4: for t = 1 to T do
5: τ (x̃t) =

∑M
i=1 γ

(t)
i τ (xt−i)

6: Predict x̃t = ζ(τ(x̃t))
7: Observe xt and receive loss `Mt

(
γ(t)

)
8: Set γ(t+1) = ΠE

(
γ(t) − η∇`Mt

(
γ(t)

))
9: end for

Table 1: DGPs and their Transformations

DGP τ(xt) ζ(x̃t)
ARMA xt x̃t
ARIMA ∆dxt x̃t +

∑d−1
i=0 ∆ixt−1

SARIMA ∆d∆D
s xt

x̃t +
∑d−1
i=0 ∆i∆D

s xt−1

+
∑D−1
i=0 ∆i

sxt−s

ARMA process. Moreover, there corresponds an
inverse transformation ζ that satisfies ζ(τ(xt)) =
xt. Examples of such a process are ARMA,
ARIMA, and SARIMA processes.

U2) The noise sequence εt of the underlying ARMA
process is independent. Also, it satisfies that
E[|εt|] < Mmax <∞.

U3) `t : R2 → R is a convex loss function with Lips-
chitz constant L > 0.

U4) We assume the companion matrix F (as defined
in Eq. 2) of the MA lag polynomial is diagonal-
izable, i.e. F = TΛT−1 where Λ is a diagonal
matrix of eigenvalues. Denote λmax as the mag-
nitude of the largest eigenvalue, and κ ∈ R such
that (σmax(T)/σmin(T)) ≤ κ.

In Algorithm 1, the model parameters of the stochas-
tic process are fixed by an adversary. At time t, εt and
xt are generated by the DGP. Before xt is revealed to
us the learner (see Algorithm 1) makes a prediction
x̃t which incurs a prediction loss of `t(xt, x̃t). This
prediction is preceded by a transform τ (See Table
1) that may require data points from previous rounds
(we suppress that dependence in the notation for con-
venience). The prediction τ(x̃t) is computed using an
AR model of order M to approximate the invertible
ARMA process. Then it is inverted with ζ and incurs

a loss

`Mt (γ) = `t (xt, ζ (τ(x̃t))) = `t

(
xt, ζ

(
M∑
i=1

γiτ (xt−i)

))
(6)

where γ is the vector of parameters of the approximat-
ing AR model. The prediction performance is evalu-
ated using an “extended” notion of regret that looks
at the prediction loss of the best process in hindsight.
Precisely, let α,β denote the set of AR and MA pa-
rameters, respectively, of the underlying ARMA pro-
cess τ(xt). Define

ft(α,β) = `t
(
xt, ζ

(
E
[
τ(xt)|τ

(
{xt}t−1

t=1

)
;α,β

]))
(7)

Note that ft depends on the transformations τ, ζ in
U1. The extended regret is defined as comparing the
accumulated loss in Eq. 6 to the loss of the best pro-
cess in hindsight:

Regret =

T∑
t=1

`Mt (γ(t))− min
α,β∈K

T∑
t=1

E[ft(α,β)] (8)

where K is the set of invertible ARMA processes. Note
that the randomness in the expectation is w.r.t. the
noise sequence εt while the data xt is fixed.

Furthermore, let E ⊆ RM be a convex set of approx-
imating AR models, i.e. γ ∈ E . E should be cho-
sen to be large enough to include a valid approxi-
mation to the DGP described in U1. However, since
the DGP is unknown in practice, one usually chooses
something simple such as E = {γ : ‖γ‖∞ ≤ 1}. Let
D = supγ1,γ2∈E ‖γ1 − γ2‖2, and ‖∇γ`mt (γ)‖2 ≤ G(T)
for some monotonically increasingG(T). This assump-
tion essentially stems from the fact that we allow the
time series to be potentially unbounded. As an ex-
ample, the norm of the gradient for the squared loss
depends on the bound on the data. Let ΠE denote the
projection operator onto the set E .

We present a general regret bound for Algorithm 1.

Theorem 3.1. Let η = D
G(T)

√
T

. Then for any data

sequence {xt}Tt=1 that satisfies assumptions U1-U4, Al-
gorithm 1 generates a sequence {γ(t)} in which

T∑
t=1

`Mt (γ(t))− min
α,β∈K

T∑
t=1

E[ft(α,β)] = O
(
DG(T)

√
T
)

Remark 1: Note that plugging in the ARMA trans-
formation and ARIMA transformation in Table 1 to
Algorithm 1 recovers ARMA-OGD as presented in [1]
and ARIMA-OGD as presented in [10], respectively.

For the following remarks, assume that `t is squared
loss, the DGP is a SARIMA process, and |xt| < C(t) =

Manuscript under review by AISTATS 2017

Table 2: Regret Bounds for Different Transformations

τ(xt) Regret Bound

xt O
(
M2 log2(T)

√
T
)

∆dxt O
(
M2
√
T
)

∆d∆D
s xt O

(
M2
√
T
)

O (log t) (note that the log transformation is com-
monly employed as a variance stabilizer in many time
series domains).

Remark 2: With these assumptions, Table 2 shows
the regret bounds obtained by using different trans-
formations. Recall that a SARIMA process is also an
ARIMA process and an ARMA process, thus plugging
in the different transforms result in valid applications
of Theorem 3.1 when the DGP is a SARIMA process.
The differencing transforms remove any growth trends
in the data; as a consequence the transformed time se-
ries is bounded by a constant. In our case this implies
|∆dxt|, |∆d∆d

sxt| < C∆ (a constant), which leads to
an improvement over the regret bound obtained from
ARMA-OGD (no transform) of [1]. This improvement
can be seen in the empirical results section of [10].

Remark 3: When the DGP is assumed to be SARIMA,
we require that la = p+Ps, lm = q+Qs, i.e. la, lm both
need to essentially be a multiplicative factor larger
than s. This affects the length of the required AR
approximation M as described in line 1 of Algorithm
1.

Remark 4: Table 2 suggests that using the ARIMA
transformation gives the same regret as when using
the SARIMA transformation. However, in this case
the SARIMA transformation empirically (Section 6)
outperforms the ARIMA transformation. As such, we
believe that these results do not paint a complete pic-
ture as to why we achieve faster empirical convergence
and a more data dependent phenomenon is perhaps at
play here. In Section 5 we explore a data dependent
analysis of FTL.

4 Error Corrected VARMA Models

Online prediction using multivariate non-stationary
models present an additional difficulty due to the no-
tion of cointegration (Section 2). Since the cointegrat-
ing relationship is unknown, we need to additionally
estimate a low rank cointegrating matrix in order to
accurately adapt to the underlying DGP and make
predictions.

Due to this unknown error correction term (Eq. 5), we
cannot directly plug in the EC-VARMA transform into

the TSP-OGD Framework (generalized to the multi-
variate setting). We instead introduce a multivariate
variant of TSP-OGD for potentially cointegrated time
series that simultaneously updates both the cointe-
grating and the approximating VAR matrix param-
eters.

4.1 Approximating an EC-VARMA Process

Given that an EC-VARMA process starts at some
fixed time t = 0 with fixed initial values, we can write
Eq. 5 in a pure EC-VAR form [13]:

∆xt = Π∗xt−1 +

t−1∑
i=1

Γ∗i∆xt−i + εt, t ∈ N (9)

This allows us to approximate an EC-VARMA process
with an EC-VAR model. To use EC-VARMA as a
DGP in Algorithm 1, we generalize Algorithm 1 to
the multivariate setting and edit line 5 to be:

∆x̃t = Π̃xt−1 +

M∑
i=1

Γ̃i∆xt−i

where γ = {Π̃, Γ̃1, . . . , Γ̃M} are the approximating EC-
VAR parameters.

4.2 Online Prediction for EC-VARMA
Models

We generalize the assumptions U1-U4 to the multivari-
ate setting:

M1) The noise sequence εt of the underlying VARMA
process is independent. Also, it satisfies that
E[‖εt‖2] < Mmax <∞.

M2) We overload notation for the vector case and let
`t : R2k → R be a convex loss function with Lips-
chitz with constant L > 0.

M3) We assume the companion matrix F of the MA
lag polynomial is diagonalizable. λmax and κ are
the same as in assumption U4.

We refer to the extension of Algorithm 1 as EC-
VARMA-OGD. The setup of this algorithm is the same
as described in Section 3. We overload more notation

Manuscript under review by AISTATS 2017

Algorithm 2 EC-VARMA-OGD

Require: DGP parameters p, q. Horizon T . Learning
rate η. Data: {xt}.

1: Set M = logλmax

((
2κTLMmax

√
q
)−1
)

+ p

2: Choose γ(1) ∈ E arbitrarily.
3: for t = 1 to T do
4: Predict x̃t = xt−1 + Π̃xt−1 +

∑M
i=1 Γ̃i∆xt−i

5: Observe xt and receive loss `Mt
(
γ(t)

)
6: Set Γ̃

(t+1)
i = ΠEΓ

(
Γ̂i − η∇Γi`

M
t

(
γ(t)

))
, for all

i
7: Set Π̃(t+1) = ΠB(∗,ρ)

(
Π̂− ηt∇Π`

M
t

(
γ(t)

))
8: end for

to generalize Equations 6 and 7:

`Mt (γ) =

`t

(
xt, xt−1 + Π̃xt−1 +

M∑
i=1

Γ̃i∆xt−i

)
(10)

ft(Π,Γ,Θ) =

`t

(
xt,xt−1 + Πxt−1 +

p−1∑
i=1

Γi∆xt−i +

q∑
i=1

Θiεt−i

)
(11)

The regret as defined in Eq. 8 can be generalized to

Regret =

T∑
t=1

`Mt (γt)− min
Π,Γ,Θ∈K

T∑
t=1

E[ft(Π,Γ,Θ)]

(12)
where K is the set of invertible EC-VARMA processes.

To encourage Π̃ to be low rank, we project it onto
B(∗, ρ), which is the nuclear norm ball of radius ρ. This
involves projecting the singular values of Π̃ onto an `1-
ball and can be efficiently done [4]. In our framework,
this is handled by letting the convex set E be described
as {γ : ‖Π̃‖∗ ≤ ρ, ‖Γ̃i‖max ≤ 1, i = 1, . . . ,M} and
plugging it into OGD where projections are made at
each iteration. For convenience of notation, let EΓ =
{Γ̃ : ‖Γ̃i‖max ≤ 1, i = 1, . . .M}. As in Section 3, E
should be chosen to be large enough to encompass a
valid approximation to the true DGP. In practice one
will choose ρ and EΓ to be something simple.

The resulting algorithm is summarized in Algorithm
2. We present the following regret bound:

Theorem 4.1. Let η = D
G(T)

√
T

. Then for any data

sequence {xt}Tt=1 that satisfies assumptions M1-M3,
Algorithm 2 generates a sequence {γt} in which

T∑
t=1

`Mt (γt)− min
Π,Γ,Θ∈K

T∑
t=1

E[ft(Π,Γ,Θ)] = O
(
DG(T)

√
T
)

(13)

For the remainder of the section, we assume that `t is
the squared loss and ‖xt‖2 < C(t) = O(log t).

Remark 1: With the above assumptions, the
resulting regret bound of EC-VARMA-OGD is

O
(
k2M2 log2(T)

√
T
)

.

Remark 2: By setting ρ = 0 and using xt in place of
∆xt (i.e. not differencing) in Algorithm 2, we can use a
VARMA process as the DGP and achieve an equivalent
regret bound as in the previous remark. Denote this
adaptation as VARMA-OGD. However, if the DGP
is EC-VARMA, we expect this to empirically perform
worse than EC-VARMA-OGD since the latter exploits
a valid transformation of the data.

Remark 3: Assume that the DGP is an EC-VARMA
process and ρ = o(1/ log2(T)). Then the regret bound

obtained is O
(
k2M2

√
T
)

. In Section 6, we find that

this choice of ρ works well empirically.

5 Data Dependent Regret Bounds

The transformations discussed in the previous sec-
tions essentially diminish the effect of serial correla-
tion in the data due to any existing trends. How-
ever, our regret bounds do not account for this adjust-
ment. We conjecture that these bounds are missing
data-dependent terms that capture correlations inher-
ent in many non-stationary time series. To give a fla-
vor of what a satisfactory data dependent regret bound
might look like, we analyze the regret for the FTL al-
gorithm for the case of least squares loss and show that
these bounds depend on a data dependent term.

For simplicity, we consider the univariate case. Specif-
ically we analyze FTL with squared loss:

`t(γ) =
1

2
(xt − γᵀψt)

2 (14)

We will look at the standard notion of regret, thus
the result in this section is much more general than
time series prediction and can be applied to general
regression problems.

The FTL algorithm follows a simple update [14]:

γt+1 ∈ argmin
γ

t∑
i=1

`t(γ) (15)

Plugging Eq. 14 in Eq. 15 reveals that the FTL al-
gorithm for least squares loss is just recursive least
squares (RLS). Using the relevant RLS update equa-
tions [11, 8], we present a data dependent regret bound
for FTL with least squares loss.

Theorem 5.1. Let `t(γ) be defined in Eq. 14 with

Manuscript under review by AISTATS 2017

Lipschitz constant L > 0. Then FTL generates a se-
quence {γt} in which

T∑
t=1

`t (γt)−min
γ

T∑
t=1

`t (γ) = O

(
T∑
t=1

1

tλmin(t)

)
where

λmin(t) = λmin

(
1

t

t∑
i=1

ψiψ
ᵀ
i

)
.

At the heart of our framework in Section 3, we are
approximating an ARMA process with an AR model.
In order to apply Theorem 5.1 to our time series pre-
diction setting for DGPs as described in assumption
U1 in Section 3, we use FTL and least squares loss to
predict the underlying ARMA process τ(xt) with an
AR model γᵀτ(ξt), where ξt =

[
xt−1 . . . xt−M

]ᵀ
and τ(ξt) =

[
τ(xt−1) . . . τ(xt−M)

]ᵀ
. This results

in λmin(t) =
(

1
t

∑t
i=1 τ(ξi)τ(ξi)

ᵀ
)

, which is the em-

pirical non-centered autocovariance of the transformed
data. Ideally, we want this quantity to be large, which
implies that each direction has a lot of information in
it. If this quantity is small, then there are directions
where the variance of τ(ξt) is small, meaning the in-
vidividual samples τ(xt) may be highly correlated.

To empirically assess the regret bound across the dif-
ferent spectrum of non-stationarities, we calculate the
bound

∑T
i=1 1/ (tλmin(t)) for the three transforms in

Table 1. We simulated a SARIMA process 50 times
with T = 10, 000. We then averaged the calculated re-
gret bound across the 50 datasets using the raw data,
trend adjusted data, and seasonal/trend adjusted data
(i.e. using each transformation). The result is shown
in Figure 1. The transformations essentially decrease
correlations making the data more like realizations of a
stationary ARMA process; we can see that accounting
for the appropriate non-stationarities results in tighter
regret bounds.

6 Empirical Results

In this section, we show empirically the impact of
transformations and methods described in Sections 3
and 4 to synthetic and real datasets. In each sce-
nario, we consider squared loss and plot the log av-
erage squared loss vs. iteration. For all experiments,
we set E = {γ : ‖γ‖max ≤ 1} and initialize all parame-
ters to 0. For all real world datasets, we log transform
the time series. Plots of these datasets can be found
in the Appendix in the supplementary material.

6.1 Accounting for Non-stationarities

As described in Section 3, we show that using transfor-
mations accounting for appropriate non-stationarities

0 2000 4000 6000 8000 10000

t

50

100

150

200

250

300

350

400

450

500
Empirical Regret bounds

Non-adjusted

Trend-adjusted

Seasonal/Trend-adjusted

Figure 1: Empirical Regret Bounds for Transformed
Data

results in faster empirical convergence. For Algo-
rithm 1, when plugging in the transformation func-
tions shown in Table 1, we fix all other parameters in
the algorithm. Recall that M to be at least a mul-
tiplicative factor larger than s. We set M = 2s and
d = 1 for each dataset.

We first simulate a synthetic time series with T =
3, 000 from the following SARIMA model (obtained
from fitting the airlines time series of [5]):

∆∆12xt = (1− 0.38L)(1− 0.57L12)εt (16)

We run Algorithm 1 on the generated series for each
transformation of the data. We plotted the log aver-
age loss in Figure 2a. As expected, accounting for the
appropriate non-stationarities results in faster conver-
gence. Note that the seasonally/trend-adjusted data
convergences almost instantly.

Next, we consider a dataset that contains daily elec-
tricity demand in Turkey from January 1, 2000, to De-
cember 31, 2008. The seasonality in this dataset is bi-
annual (rounded down to s = 182 days). This dataset
exhibits seasonality and an upwards trend, making it
sutable for being modeled by a SARIMA process. The
results are shown in Figure 2b. Performing any type
of differencing results in faster convergence compared
to the non-adjusted transform. Recognizing the trend
but ignoring the seasonal trend results in slower con-
vergence compared to recognizing both types of trends.

Lastly, we consider a dataset that contains daily
recorded births in Quebec from Jan. 01, 1977 to
Dec. 31, 1990. There is a weekly seasonality pat-
tern with s = 7. The results are shown in Figure 2c.
As shown in the previous example, accounting for any
non-stationarity results in faster convergence. How-
ever, accounting for the seasonal trend on top of the

Manuscript under review by AISTATS 2017

0 500 1000 1500 2000 2500 3000

t

2

0

2

4

6

8

10
Log average loss for Synthetic Data

Non-adjusted

Trend-adjusted

Seasonal/Trend-adjusted

(a) Synthetic data

0 500 1000 1500 2000 2500 3000

t

10

8

6

4

2

0

2

4
Log average loss for Turkey Electricity Demand

Non-adjusted

Trend-adjusted

Seasonal/Trend-adjusted

(b) Turkey electricity demand

0 1000 2000 3000 4000 5000 6000

t

8

6

4

2

0

2

4
Log average loss for Births in Quebec

Non-adjusted

Trend-adjusted

Seasonal/Trend-adjusted

(c) Births in Quebec

0 200 400 600 800 1000 1200 1400 1600

t

12

10

8

6

4

2

0

2

4

6
Log average Loss for Stock Data

Non-adjusted

Adjusted

(d) Stock data

0 50 100 150 200 250 300 350 400 450

t

2

1

0

1

2

3

4

5

6
Log Average Loss for Google Flu data

Non-adjusted

Adjusted

(e) Google flu data

Figure 2: Empirical results. The top line has results for univariate data, and the bottom line has results for
multivariate data.

trend results in little improvement. Note that ARIMA
processes can model seasonality just as well, thus a
seasonal tranform is not guaranteed to always improve
convergence even when the data does exhibit such pat-
terns. Normally the differencing orders are determined
by statistical tests. See [5] for details.

6.2 Multivariate Algorithms

In the multivariate setting we show empirically that
accounting for cointegration results in faster conver-
gence. We look at the results of running EC-VARMA-
OGD (adjusted) as described in Algorithm 2 vs.
VARMA-OGD (non-adjusted) on two real datasets.

We collected 7 time series of stock prices from Ya-
hoo Finance (http://finance.yahoo.com/) of large
technology companies, and also includes the S&P500
index. By including the S&P500, which is essentially
an weighted average of 500 company stock prices, we
have partially introduced cointegration into the time
series. We set M = 10, ρ = 0.5 and ran both algo-
rithms with the resulting plots in Figure 2d. As ex-
pected, accounting for cointegration results in better
performance. There is a bump in the convergence plot
due to a spike in the data (Appendix).

We also evaluated the algorithms on the Google
Flu dataset (https://www.google.com/publicdata/

explore/). We looked at the influenza rates of 28
countries. Plotting them, one can see two distinct sea-
sonality patterns: the northern hemisphere countries
have flu incidents that peak in one part of the year
while the southern hemisphere countries have flu inci-
dents that peak in the other part of the year. Thus it
makes sense to believe that the time series exhibits a
cointegrated relationship. This dataset exhibits yearly
seasonality (52 weeks), thus we set M = 60 to be larger
than one seasonal period. We choose ρ = 0.5 and
plot the results are given in Figure 2e. We see that
adjusting for the cointegration dramatically increases
performance.

7 Conclusions and Future Work

We developed a framework to account for non-
stationary artifacts in both univariate and multivari-
ate time series. We observed in the empirical results
section that this leads to faster convergence. Specu-
lating that accounting for non-stationary artifacts like
a trend and/or seasonality reduces correlation in the
data, we presented a data-dependent bound for FTL
for squared loss. In future work, we plan to explore on-
line algorithms that can give data dependent bounds.

http://finance.yahoo.com/
https://www.google.com/publicdata/explore/
https://www.google.com/publicdata/explore/

Manuscript under review by AISTATS 2017

References

[1] O. Anava, E. Hzan, S. Mannor, and O. Shamir.
Online learning for time series prediction. In
JMLR: Workshop and Conference Proceedings of
Conference on Learning Theory, volume 13, 2013.

[2] P. Brockwell and R. Davis. Time Series: Theory
and Methods. Springer, 2009.

[3] N. Cesa-Bianchi and G. Lugosi. Prediction, learn-
ing, and games. Cambridge university press, 2006.

[4] J. Duchi, S. Shalev-Shwartz, Y. Singer, and
T. Chandra. Efficient projections onto the l 1-ball
for learning in high dimensions. In Proceedings
of the 25th international conference on Machine
learning, pages 272–279. ACM, 2008.

[5] G. J. George Box and G. Reinsel. Time Series
Analysis: Forecasting and Control. Prentice-Hall,
1994.

[6] J. D. Hamilton. Time series analysis princeton
university press. Princeton, NJ, 1994.

[7] E. Hazan, A. Agarwal, and S. Kale. Logarithmic
regret algorithms for online convex optimization.
Machine Learning, 69(2-3):169–192, 2007.

[8] T. L. Lai and C. Z. Wei. Least squares estimates
in stochastic regression models with applications
to identification and control of dynamic systems.
The Annals of Statistics, pages 154–166, 1982.

[9] P. Liang. Cs229t/stat231: Statistical learning
theory (winter 2014).

[10] C. Liu, S. C. Hoi, P. Zhao, and J. Sun. Online
arima algorithms for time series prediction. In
Thirtieth AAAI Conference on Artificial Intelli-
gence, 2016.

[11] L. Ljung. System identification. In Signal Analy-
sis and Prediction, pages 163–173. Springer, 1998.

[12] H. Lütkepohl. New introduction to multiple time
series analysis. Springer Science & Business Me-
dia, 2005.

[13] H. Lütkepohl. Forecasting with varma mod-
els. Handbook of economic forecasting, 1:287–325,
2006.

[14] S. Shalev-Shwartz. Online learning and online
convex optimization. Foundations and Trends in
Machine Learning, 4(2):107–194, 2011.

[15] D. Thompson. Jackknifing multiple-window spec-
tra. In Proceedings of the 6th ICASSP, pages 73–
76, 1994.

[16] R. Tsay. Multivariate Time Series Analysis: With
R and Financial Applications. Wiley, 2013.

[17] M. Zinkevich. Online convex programming and
generalized infinitesimal gradient ascent. In
ICML, 2003.

Manuscript under review by AISTATS 2017

8 Appendix

8.1 Proof of Theorem 3.1

We reproduce the proof given in Anava et al. [1] and Liu et al. [10] using our transformation notation, and with
the more natural and relaxed assumption of invertibility of the MA process.

Proof. Step 1: Assume that ζ(x̃t) is a linear function such as the ones given in Table 1. Then {`Mt } are convex
loss functions, and we may invoke [17] with a fixed step size η = D

G(T)
√
T

:

T∑
t=1

`Mt (γt)−min
γ

T∑
t=1

`Mt (γ) = O
(
DG(T)

√
T
)

Note that the proof in [17] uses a constant upper bound G on the gradients. Since we assume G(T) is a
monotonically increasing function, the proof in [17] follows through straightforwardly.

Step 2: Let α,β denote the parameters of the underlying ARMA(la, lm) process. We define a few things:

τ (x∞t (α,β)) =

la∑
i=1

αiτ (xt−i) +

lm∑
i=1

βi
(
τ (xt−i)− τ

(
x∞t−i(α,β)

))
x∞t (α,β) = ζ (τ (x∞t (α,β)))

with initial condition τ (x∞t (α,β)) = τ (xt) for t < 0. For convenience, assume that we have fixed data
x0, . . . , x−h so that τ(x0), . . . , τ(x−la) exists. Denote

f∞t (α,β) = `t (xt, x
∞
t (α,β))

With this definition, we can write τ (x∞t (α,β)) =
∑t+la
i=1 ci(α,β)τ (xt−i), i.e. as a growing AR process. Next,

we define

τ (xmt (α,β)) =

la∑
i=1

αiτ (xt−i) +

lm∑
i=1

βi
(
τ (xt−i)− τ

(
xm−it−i (α,β)

))
xmt (α,β) = ζ (τ (xmt (α,β)))

with initial condition τ (xmt (α,β)) = τ (xt) for m < 0. We relate M and m with this relation: M = m+ la. With

this definition, we can write τ (xmt (α,β)) =
∑M
i=1 c̃i(α,β)τ (xt−i), i.e. as a fixed length AR process. Denote

fmt (α,β) = `t (xt, x
m
t (α,β))

Let (α∗,β∗) = argminα,β∈K
∑T
t=1 E [ft(α,β)]. Recall that the only random part of the expectation is εt. xt is

fixed in this quantity.

Lemma 8.1.1 gives us that

min
γ

T∑
t=1

`Mt (γ) ≤
T∑
t=1

fmt (α∗,β∗)

Lemma 8.1.3 says that choosing m = logλmax

((
2κTLMmax

√
lm
)−1
)

results in∣∣∣∣∣
T∑
t=1

E[fmt (α∗,β∗)]−
T∑
t=1

E[f∞t (α∗,β∗)]

∣∣∣∣∣ = O(1)

Lemma 8.1.2 gives us that ∣∣∣∣∣
T∑
t=1

E[f∞t (α∗,β∗)]−
T∑
t=1

E[ft(α
∗,β∗)]

∣∣∣∣∣ = O(1)

Manuscript under review by AISTATS 2017

Chaining all of these gives us the final result:

T∑
t=1

`mt (γt)− min
α,β∈K

T∑
t=1

E[ft(α,β)] = O
(
DG(T)

√
T
)

Lemma 8.1.1. For all m and {xt} that satisfies the assumptions U1-U4, we have that

min
γ

T∑
t=1

`mt (γ) ≤
T∑
t=1

fmt (α∗,β∗)

Proof. We simply set γ∗i = c̃i(α
∗,β∗) and get

∑T
t=1 `

m
t (γ∗) =

∑T
t=1 f

m
t (α∗,β∗). Thus, the minimum holds

trivially. Note that we assume γ∗ ∈ E .

Lemma 8.1.2. For any data sequence {xt} that satisfies the assumptions U1-U4, it holds that∣∣∣∣∣
T∑
t=1

E[f∞t (α∗,β∗)]−
T∑
t=1

E[ft(α
∗,β∗)]

∣∣∣∣∣ = O(1)

Proof. Let (α′,β′) denote the parameters that generated the signal. Thus,

ft(α
′,β′) = `t(xt, xt − εt)

for all t. Since εt is independent of ε1, . . . , εt−1, the best prediction at time t will cause a loss of at least
E[`t(xt, xt − εt)]. Since E[εt] = 0 and `t is convex, it follows that (α∗,β∗) = (α′,β′) and that

ft(α
∗,β∗) = `t(xt, xt − εt)

We define a few things first. Let

yt = τ (xt)− τ (x∞t (α∗,β∗))− εt, yt =

yt
yt−1

...
yt−q+1

WLOG (and by assumption), we can assume that E [‖y0‖2] ≤ ρ, where ρ is some positive constant. Next we
show that

E[|yt|] = E [|τ (xt)− τ (x∞t (α∗,β∗))− εt|] ≤ κλtmaxρ

We have that

τ (xt)− τ (x∞t (α∗,β∗))− εt =

la∑
i=1

α∗i τ (xt−i) +

lm∑
i=1

β∗i εt−i + εt

−
la∑
i=1

α∗i τ (xt−i)−
lm∑
i=1

β∗i
(
τ (xt−i)− τ

(
x∞t−i(α

∗,β∗)
))
− εt

=−
lm∑
i=1

β∗i
(
τ (xt−i)− τ

(
x∞t−i(α

∗,β∗)
)
− εt−i

)
which shows that yt = −

∑lm
i=1 β

∗
i yt−i. The companion matrix to this difference equation is exactly F as defined

in Eq. 2. Thus,

yt = Fyt−1

Manuscript under review by AISTATS 2017

Next, we note that

|yt| ≤ ‖yt‖2 = ‖Fyt−1‖2
= ‖F2yt−2‖2
= ‖Fty0‖2
= ‖TΛtT−1y0‖2
≤ ‖T‖2‖T−1‖2‖Λt‖2‖y0‖2

=
σmax(T)

σmin(T)
λtmax‖y0‖2

≤ κλtmax‖y0‖2

Taking the expectation gives us E[|yt|] ≤ κλtmaxE [‖y0‖2] ≤ κλtmaxρ.

Now we combine this with the Lipschitz continuity of `t to get

|E [f∞t (α∗,β∗)]− E [ft(α
∗,β∗)]| = |E [`t(xt, x

∞
t (α∗,β∗))]− E [`t(xt, xt − εt)]|

≤ E [|`t(xt, x∞t (α∗,β∗))− `t(xt, xt − εt)|]
≤ L · E [|xt − x∞t (α∗,β∗)− εt|]
= L · E [|τ (xt)− τ (x∞t (α∗,β∗))− εt|]
≤ κLρλtmax

where we used Jensen’s inequality in the first inequality. Note that we also assume xt−x̃t = ζ(τ(xt))−ζ(τ(x̃t)) =
τ(xt)− τ(x̃t). This holds true for the transformations given in Table 1. Summing this from t = 1 to T gives us
the result.

Lemma 8.1.3. For any data sequence {xt} that satisfies the assumptions U1-U4, it holds that∣∣∣∣∣
T∑
t=1

E [fmt (α∗,β∗)]−
T∑
t=1

E [f∞t (α∗,β∗)]

∣∣∣∣∣ = O(1)

if we choose m = logλmax

(
(2κTLMmax

√
lm)−1

)
.

Proof. Fix t. Note that for m < 0,

|τ (xmt (α∗,β∗))− τ (x∞t (α∗,β∗)) | = |τ (xt)− τ (x∞t (α∗,β∗)) |
≤ |τ (xt)− τ (x∞t (α∗,β∗))− εt|+ |εt|

The right hand side of the inequality is simply |yt|+ |εt|, where yt is as defined in Lemma 8.1.2. By assumption,
E[|εt|] < Mmax. Assume that Mmax is large enough such that E[|yt|] ≤Mmax. This is a valid assumption since it
is decaying exponentially as proved in Lemma 8.1.2. It is important to note that τ (xmt (α,β)) and τ (x∞t (α,β))
have no randomness in them since τ is deterministic. Thus, for m < 0,

|τ (xmt (α∗,β∗))− τ (x∞t (α∗,β∗)) | = E [|τ (xmt (α∗,β∗))− τ (x∞t (α∗,β∗)) |]
= E [|τ (xt)− τ (x∞t (α∗,β∗)) |]
≤ E[|yt|+ |εt|]
≤ 2Mmax

Squaring both sides of the inequality results in

(τ (xmt (α∗,β∗))− τ (x∞t (α∗,β∗)))2 ≤ 4M2
max

Next, we define

zmt = τ (xmt (α∗,β∗))− τ (x∞t (α∗,β∗)) , zmt =

zmt
zm−1
t−1
...

zm−q+1
t−q+1

Manuscript under review by AISTATS 2017

We have that

τ (xmt (α∗,β∗))− τ (x∞t (α∗,β∗)) =

la∑
i=1

α∗i τ (xt−i) +

lm∑
i=1

β∗i (τ (xt−i)− τ
(
xm−it−i (α∗,β∗)

)
)

−
la∑
i=1

α∗i τ (xt−i)−
lm∑
i=1

β∗i (τ (xt−i)− τ
(
x∞t−i(α

∗,β∗)
)
)

=−
lm∑
i=1

β∗i
(
τ
(
xm−it−i (α∗,β∗)

)
− τ

(
x∞t−i(α

∗,β∗)
))

Thus, zmt = −
∑lm
i=1 β

∗
i z
m−i
t−i . The companion matrix to this difference equation is exactly F as defined in Eq. 2.

Thus,
zmt = Fzm−1

t−1

We have that

|zmt | ≤ ‖zmt ‖2 = ‖Fzm−1
t−1 ‖2

= ‖F2zm−2
t−2 ‖2

= ‖Fmz0
t−m‖2

= ‖TΛmT−1z0
t−m‖2

≤ ‖T‖2‖T−1‖2‖Λm‖2‖z0
t−m‖2

=
σmax(T)

σmin(T)
λmmax

√√√√lm−1∑
i=0

(z−it−m−i)
2

≤ κλmmax

√
q4M2

max

= κλmmax2Mmax

√
lm

Now we combine this with the Lipschitz continuity of `t to get

|E[fmt (α∗,β∗)]− E[f∞t (α∗,β∗)]| = |E[`t(xt, x
m
t (α∗,β∗))]− E[`t(xt, x

∞
t (α∗,β∗))]|

≤ E[|`t(xt, xmt (α∗,β∗))− `t(xt, x∞t (α∗,β∗))|]
≤ L · E[|xmt (α∗,β∗)− x∞t (α∗,β∗)|]
= L · |τ (xmt (α∗,β∗))− τ (x∞t (α∗,β∗)) |

≤ 2κLMmax

√
lmλ

m
max

where in the first inequality we used Jensen’s inequality and we again used the assumption that
xt − x̃t = τ(xt)− τ(x̃t).

Summing this quantity from t = 1 to T gives us the result:∣∣∣∣∣
T∑
t=1

E[f∞t (α∗,β∗)]−
T∑
t=1

E[fmt (α∗,β∗)]

∣∣∣∣∣ ≤ 2κTLMmax

√
lmλ

m
max

Choosing m = logλmax

(
(2κTLMmax

√
lm)−1

)
gives us the desired O(1) property.

8.2 Proof of Theorem 4.1

Proof. We again produce a proof of very similar structure to Anava et al. [1] and Liu et al. [10]. We first need
to redefine a few things for the vector case. Let D = supγ1,γ2∈K ‖γ1 − γ2‖F , and ‖∇γ`mt (γ)‖F ≤ G(T).

Step 1: Since {`Mt } are convex loss functions, we may invoke [17] with a fixed step size η = D
G(T)

√
T

:

T∑
t=1

`Mt (γt)−min
γ

T∑
t=1

`Mt (γ) = O
(
DG(T)

√
T
)

Manuscript under review by AISTATS 2017

Again, we note that the proof in [17] uses a constant upper bound G on the gradients. Since we assume G(T) is
a monotonically increasing function, the proof in [17] follows through straightforwardly.

Step 2: Next we define a few things in the same vein as in the proof of Theorem 3.1. Let

∆x∞t (Π,Γ,Θ) = Πxt−1 +

p−1∑
i=1

Γi∆xt−i +

q∑
i=1

Θi

(
∆xt−i −∆x∞t−i(Π,Γ,Θ)

)
x∞t (Π,Γ,Θ) = ∆x∞t (Π,Γ,Θ) + xt−1

f∞t (Π,Γ,Θ) = `t (xt, x∞t (Π,Γ,Θ))

with initial condition ∆x∞t (Π,Γ,Θ) = ∆xt for all t < 0. Note that we are assuming that we have fixed data

x0, . . . ,x−p. With this definition, we can write ∆x∞t (Π,Γ,Θ) = c0(Π,Γ,Θ)xt−1 +
∑t+p−1
i=1 ci(Π,Γ,Θ)∆xt−i,

i.e. as a growing AR process. This is because we can undo the reparameterization and write ∆xt in its original
VARMA process form

x∞t (Π,Γ,Θ) =

p∑
i=1

Aixt−i +

q∑
i=1

Θi

(
xt−i − x∞t−i(Π,Γ,Θ)

)
=

t+p∑
i=1

ci(A,Θ)xt−i

as shown in the proof of Algorithm 1. Using the error corrected reparameterization here results in

∆x∞t (Π,Γ,Θ) = c0(Π,Γ,Θ)xt−1 +

t+p−1∑
i=1

ci(Π,Γ,Θ)∆xt−i

Furthermore, we define

∆xmt (Π,Γ,Θ) = Πxt−1 +

p−1∑
i=1

Γi∆xt−i +

q∑
i=1

Θi

(
∆xt−i −∆xm−it−i (Π,Γ,Θ)

)
xmt (Π,Γ,Θ) = ∆xmt (Π,Γ,Θ) + xt−1

fmt (Π,Γ,Θ) = `t(xt, xmt (Π,Γ,Θ))

with initial condition ∆xmt (Π,Γ,Θ) = ∆xt for all m < 0. We relate M = m + p − 1. With this definition, we

can write ∆xmt (Π,Γ,Θ) = c̃0(Π,Γ,Θ)xt−1 +
∑M
i=1 c̃i(Π,Γ,Θ)∆xt−i by using similar rearrangement arguments

as shown above.

Lastly, we define

(Π∗,Γ∗,Θ∗) = argmin
Π,Γ,Θ

T∑
t=1

E[ft(Π,Γ,Θ)]

Recall that xt is fixed in the expectation.

Lemma 8.2.1 gives us that

min
γ

T∑
t=1

`Mt (γ) ≤
T∑
t=1

fmt (Π∗,Γ∗,Θ∗)

Lemma 8.2.3 says that choosing m = logλmax

((
2κTLMmax

√
q
)−1
)

results in∣∣∣∣∣
T∑
t=1

E[fmt (Π∗,Γ∗,Θ∗)]−
T∑
t=1

E[f∞t (Π∗,Γ∗,Θ∗)]

∣∣∣∣∣ = O(1)

Lemma 8.2.2 gives us that ∣∣∣∣∣
T∑
t=1

E[f∞t (Π∗,Γ∗,Θ∗)]−
T∑
t=1

E[ft(Π
∗,Γ∗,Θ∗)]

∣∣∣∣∣ = O(1)

Manuscript under review by AISTATS 2017

Chaining all of these gives us the final result:

T∑
t=1

`Mt (γt)− min
Π,Γ,Θ

T∑
t=1

E[ft(Π,Γ,Θ)] = O
(
DG(T)

√
T
)

Lemma 8.2.1. For all m and {xt} that satisfies assumptions M1-M3, we have that

min
γ

T∑
t=1

`mt (γ) ≤
T∑
t=1

fmt (Π∗,Γ∗,Θ∗)

Proof. Recall that γ = {Π̃, Γ̃i, i = 1, . . . ,M} We simply set Π̃∗ = c̃0(Π∗,Γ∗,Θ∗), Γ̃∗i = c̃i(Π
∗,Γ∗,Θ∗) and let

that be denoted by γ∗. Thus, we get
∑T
t=1 `

M
t (γ∗) =

∑T
t=1 f

m
t (Π∗,Γ∗,Θ∗). Thus, the minimum holds trivially.

Note that we assume γ∗ ∈ E .

Lemma 8.2.2. For any data sequence {xt}Tt=1 that satisfies assumptions M1-M5, it holds that∣∣∣∣∣
T∑
t=1

E[f∞t (Π∗,Γ∗,Θ∗)]−
T∑
t=1

E[ft(Π
∗,Γ∗,Θ∗)]

∣∣∣∣∣ = O(1)

Proof. We start the proof in the same exact way that Anava does. Let (Π′,Γ′,Θ′) denote the parameters that
generated the signal. Thus,

ft(Π
′,Γ′,Θ′) = `t(xt,xt − εt)

for all t. Since εt is independent of ε1, . . . , εt−1, the best prediction at time t will cause a loss of at least
E[`t(xt,xt − εt)]. Since E[εt] = 0 and `t is convex, it follows that (Π∗,Γ∗,Θ∗) = (Π′,Γ′,Θ′) and that

ft(Π
∗,Γ∗,Θ∗) = `t(xt,xt − εt)

We define a few things first. Let

yt = ∆xt −∆x∞t (Π∗,Γ∗,Θ∗)− εt, Yt =

yt

yt−1

...
yt−q+1

(note the overloading from previous sections) By assumption, we can assume that E [‖Y0‖2] ≤ ρ, where ρ is
some positive constant. Next we show that

E[‖yt‖2] = E [‖∆xt −∆x∞t (Π∗,Γ∗,Θ∗)− εt‖2] ≤ κλtmaxρ

We have that

∆xt −∆x∞t (Π∗,Γ∗,Θ∗)− εt = Π∗xt−1 +

p−1∑
i=1

Γ∗i∆xt−i +

q∑
i=1

Θ∗i εt−i + εt

−Π∗xt−1 −
p−1∑
i=1

Γ∗i∆xt−i −
q∑
i=1

Θ∗i
(
∆xt−i −∆x∞t−i(Π

∗,Γ∗,Θ∗)
)
− εt

=−
q∑
i=1

Θ∗i
(
∆xt−i −∆x∞t−i(Π

∗,Γ∗,Θ∗)− εt−i
)

which shows that yt = −
∑q
i=1 Θ∗iyt−i. The companion matrix to this difference equation is F. Thus,

Yt = FYt−1

Manuscript under review by AISTATS 2017

Next, we note that

‖yt‖2 ≤ ‖Yt‖2 = ‖FYt−1‖2
= ‖F2Yt−2‖2
= ‖FtY0‖2
= ‖TΛtT−1Y0‖2
≤ ‖T‖2‖T−1‖2‖Λt‖2‖Y0‖2

=
σmax(T)

σmin(T)
λtmax‖Y0‖2

≤ κλtmax‖Y0‖2

Taking the expectation gives us E[‖yt‖2] ≤ κ(1− ε)tE [‖Y0‖2] ≤ κλtmaxρ.

Now we combine this with the Lipschitz continuity of `t to get

|E [f∞t (Π∗,Γ∗,Θ∗)]− E [ft(Π
∗,Γ∗,Θ∗)]| = |E [`t(xt,x

∞
t (Π∗,Γ∗,Θ∗))]− E [`t(xt,xt − εt)]|

≤ E [|`t(xt,x∞t (Π∗,Γ∗,Θ∗))− `t(xt,xt − εt)|]
≤ L · E [‖xt − x∞t (Π∗,Γ∗,Θ∗)− εt‖2]

= L · E [‖∆xt −∆x∞t (Π∗,Γ∗,Θ∗)− εt‖2]

≤ κLρλtmax

where we used Jensen’s inequality in the first inequality. Summing this from t = 1 to T gives us the result.

Lemma 8.2.3. For any data sequence {xt}Tt=1 that satisfies assumptions M1-M3, it holds that∣∣∣∣∣
T∑
t=1

E [fmt (Π∗,Γ∗,Θ∗)]−
T∑
t=1

E [f∞t (Π∗,Γ∗,Θ∗)]

∣∣∣∣∣ = O(1)

if we choose m = logλmax

(
(2κTLMmax

√
q)−1

)
.

Proof. Fix t. Note that for m < 0,

|∆xmt (Π∗,Γ∗,Θ∗)−∆x∞t (Π∗,Γ∗,Θ∗)| = |∆xt −∆x∞t (Π∗,Γ∗,Θ∗)|
≤ |∆xt −∆x∞t (Π∗,Γ∗,Θ∗)− εt|+ |εt|

The right hand side of the inequality is simply ‖yt‖2 + ‖εt‖2, where yt is as defined in Lemma 8.2.2. By
assumption, E[‖εt‖2] < Mmax. Assume that Mmax is large enough such that E[‖yt‖2] ≤ Mmax. This is a
valid assumption since it is decaying exponentially as proved in Lemma 8.2.2. It is important to note that
∆xmt (Π,Γ,Θ) and ∆x∞t (Π,Γ,Θ) have no randomness in them (recall that they can be written as a linear
combination of past values of the realized data sequence ∆xt). Thus, for m < 0,

‖∆xmt (Π∗,Γ∗,Θ∗)−∆x∞t (Π∗,Γ∗,Θ∗)‖2 = E [‖∆xmt (Π∗,Γ∗,Θ∗)−∆x∞t (Π∗,Γ∗,Θ∗)‖2]

= E [‖∆xt −∆x∞t (Π∗,Γ∗,Θ∗)‖2]

≤ E[‖yt‖2 + ‖εt‖2]

≤ 2Mmax

Squaring both sides of the inequality results in

‖∆xmt (Π∗,Γ∗,Θ∗)−∆x∞t (Π∗,Γ∗,Θ∗)‖22 ≤ 4M2
max

Next, we define

zmt = ∆xmt (Π∗,Γ∗,Θ∗)−∆x∞t (Π∗,Γ∗,Θ∗), Zmt =

zmt

zm−1
t−1
...

zm−q+1
t−q+1

Manuscript under review by AISTATS 2017

We have that

∆xmt (Π∗,Γ∗,Θ∗)−∆x∞t (Π∗,Γ∗,Θ∗) = Π∗xt−1 +

k∑
i=1

Γ∗i∆xt−i +

q∑
i=1

Θ∗i (∆xt−i −∆xm−it−i (Π∗,Γ∗,Θ∗))

−Π∗xt−1 −
k∑
i=1

Γ∗i∆xt−i −
q∑
i=1

Θ∗i (∆xt−i −∆x∞t−i(Π
∗,Γ∗,Θ∗))

=−
q∑
i=1

Θ∗i
(
∆xm−it−i (Π∗,Γ∗,Θ∗)−∆x∞t−i(Π

∗,Γ∗,Θ∗)
)

Thus, zmt = −
∑q
i=1 Θ∗i z

m−i
t−i . The companion matrix to this difference equation is exactly F as defined above.

Thus,

Zmt = FZm−1
t−1

We have that

‖zmt ‖2 ≤ ‖Zmt ‖2 = ‖FZm−1
t−1 ‖2

= ‖F2Zm−2
t−2 ‖2

= ‖FmZ0
t−m‖2

= ‖TΛmT−1Z0
t−m‖2

≤ ‖T‖2‖T−1‖2‖Λm‖2‖Z0
t−m‖2

=
σmax(T)

σmin(T)
λmmax

√√√√q−1∑
i=0

‖z−it−m−i‖22

≤ κλmmax

√
q4M2

max

= κλmmax2Mmax
√
q

Now we combine this with the Lipschitz continuity of `t to get

|E[fmt (Π∗,Γ∗,Θ∗)]− E[f∞t (Π∗,Γ∗,Θ∗)]| = |E[`t(xt,x
m
t (Π∗,Γ∗,Θ∗))]− E[`t(xt,x

∞
t (Π∗,Γ∗,Θ∗))]|

≤ E[|`t(xt,xmt (Π∗,Γ∗,Θ∗))− `t(xt,x∞t (Π∗,Γ∗,Θ∗))|]
≤ L · E[‖xmt (Π∗,Γ∗,Θ∗)− x∞t (Π∗,Γ∗,Θ∗)‖2]

= L · ‖∆xmt (Π∗,Γ∗,Θ∗)−∆x∞t (Π∗,Γ∗,Θ∗)‖2
≤ 2κLMmax

√
qλmmax

where in the first inequality we used Jensen’s inequality.

Summing this quantity from t = 1 to T gives us the result:∣∣∣∣∣
T∑
t=1

E[fmt (Π∗,Γ∗,Θ∗)]−
T∑
t=1

E[f∞t (Π∗,Γ∗,Θ∗)]

∣∣∣∣∣ ≤ 2κTLMmax
√
qλmmax

Choosing m = logλmax

(
(2κTLMmax

√
q)−1

)
gives us the desired O(1) property.

8.3 Proof of Theorem 5.1

Proof. Recall that for FTL, we have that

γt ∈ argmin
γ

t−1∑
i=1

`t(γ) = argmin
γ

1

2

t−1∑
i=1

(xt − γᵀψt)
2 = argmin

γ

1

2
‖Xt −Ψtγ‖22

Manuscript under review by AISTATS 2017

where Xt =
[
xt . . . x1

]ᵀ
,Ψt =

[
ψt . . .ψ1

]ᵀ
. Note that this is simply a recursive least squares procedure.

This procedure can be computed in a recursive manner using the update equations:

γt+1 = γt +
xt −ψᵀ

t γt
1 +ψᵀ

t Vt−1ψt
Vt−1ψt

Vt+1 = Vt −
Vtψt+1ψ

ᵀ
t+1Vt

1 +ψᵀ
t+1Vtψt+1

where Vt =
(∑t

i=1ψiψ
ᵀ
i

)−1

. Using the fact that `t is Lipschitz, we have that

|`t(γt)− `t(γt+1)| ≤ L‖γt+1 − γt‖2

= L

∥∥∥∥ xt − γᵀ
t ψt

1 +ψᵀ
t Vt−1ψt

Vt−1ψt

∥∥∥∥
2

≤ L
∣∣∣∣ xt − γᵀ

t ψt
1 +ψᵀ

t Vt−1ψt

∣∣∣∣ ‖Vt−1‖2‖ψt‖2

≤ L2 ‖Vt−1‖2
= L2λmax (Vt−1)

=
L2

(t− 1)λmin(t− 1)

where we used the fact that ‖∇γ`t(γ)‖2 = |xt − γᵀψt|‖ψt‖2 ≤ L, 1
1+ψᵀ

t Vt−1ψt
≤ 1.

To complete the proof, we sum this quantity up and invoke Lemma 8.3.1. To avoid the divide-by-zero, simply
start the indexing at t = 2.

Lemma 8.3.1. Let `1, . . . , `T be a sequence of loss functions. Let γ1, . . . ,γt be produced by FTL. Then

T∑
t=1

`t(γt)−min
γ

T∑
t=1

`t(γ) ≤
T∑
t=1

[`t(γt)− `t(γt+1)]

This is fairly standard material. For reference to a proof, see [9].

8.4 Data for Experiments

In this section, we display the data we used in Section 6.

Manuscript under review by AISTATS 2017

2000 2001 2002 2003 2004 2005 2006 2007 2008

Days

10000

15000

20000

25000

E
le

ct
ri

ci
ty

 D
e
m

a
n
d

(a) Turkey electricity demand

1977 1979 1981 1983 1985 1987 1989

Days

150

200

250

300

350

N
u
m

b
e
r

o
f

B
ir

th
s

(b) Births in Quebec

0 200 400 600 800 1000 1200 1400

Days

0

500

1000

1500

2000

2500

S
to

ck
 P

ri
ce

(c) Stock data

0 100 200 300 400 500

Weeks

0

2000

4000

6000

8000

10000

12000

(d) Google flu data

Figure 3: Data plots. The top line has plots for univariate data, and the bottom line has plots for multivariate
data.

	Introduction
	Contributions

	Preliminaries: Time Series Modeling
	Notation
	SARIMA Processes
	VARMA Processes
	EC-VARMA Model

	Online Time Series Prediction Framework
	TSP-OGD

	Error Corrected VARMA Models
	Approximating an EC-VARMA Process
	Online Prediction for EC-VARMA Models

	Data Dependent Regret Bounds
	Empirical Results
	Accounting for Non-stationarities
	Multivariate Algorithms

	Conclusions and Future Work
	Appendix
	Proof of Theorem 3.1
	Proof of Theorem 4.1
	Proof of Theorem 5.1
	Data for Experiments

