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Abstract
Learning-based 3D object reconstruction enables
single- or few-shot estimation of 3D object mod-
els. For robotics this holds the potential to allow
model-based methods to rapidly adapt to novel
objects and scenes. Existing 3D reconstruction
techniques optimize for visual reconstruction fi-
delity, typically measured by chamfer distance
or voxel IOU. We find that when applied to real-
istic, cluttered robotics environments these sys-
tems produce reconstructions with low physical
realism, resulting in poor task performance when
used for model-based control. We propose ARM
an amodal 3D reconstruction system that intro-
duces (1) an object stability prior over the shapes
of groups of objects, (2) an object connectivity
prior over object shapes, and (3) a multi-channel
input representation and reconstruction objective
that allows for reasoning over relationships be-
tween groups of objects. By using these priors
over the physical properties of objects, our sys-
tem improves reconstruction quality not just by
standard visual metrics, but also improves per-
formance of model-based control on a variety of
robotics manipulation tasks in challenging, clut-
tered environments.

1. Introduction
There has been a surge of interest in learning and using
object representations for reinforcement learning and con-
trol. By learning to predict future observations or using
encoder-decoder architectures with object priors, several
recent works learn object masks or 2D keypoints (Goel
et al., 2018; Zhu et al., 2018; Greff et al., 2019; Kulkarni
et al., 2019; Anand et al., 2019; Lin et al., 2020; Agnew &
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Figure 1. Comparison of physical behaviors of reconstructions
from different algorithms.

Domingos, 2020; Van Steenkiste et al., 2018; Kosiorek et al.,
2018), enabling significant improvements in downstream
task sample efficiency. However, in 3D environments, 2D
object representations are insufficient for understanding im-
portant features such as relative distances and contacts be-
tween objects. In addition, all of these methods require
many environment observations to learn object representa-
tions, limiting their ability to rapidly adapt to novel objects.
Recent years have seen major advances in reconstructing
3D object models from images (Wu et al., 2017; Richter &
Roth, 2018; Wang et al., 2018; Kato et al., 2018; Smith et al.,
2019; Gkioxari et al., 2019; Tian et al., 2019; Kanazawa
et al., 2018; Zhang et al., 2018; Tatarchenko et al., 2017;
Yingze Bao et al., 2013; Smith et al., 2018; Mescheder et al.,
2019). We find that directly applying state-of-the-art unseen
object reconstruction techniques (Zhang et al., 2018) to clut-
tered environments frequently fails to reconstruct objects
in regions occluded by distractor objects, leading to phys-
ically unstable models. These low-quality reconstructions
often lead to poor performance in downstream manipulation
problems. In this paper we propose ARM, an object recon-
struction system which incorporates priors over the physical
properties of objects to produces 3D reconstructions with
high physical fidelity from a single RGBD image. Through
experiments we show that ARM can produce models of
sufficient physical quality for robotic planning and manip-
ulation even in cluttered scenes of objects unseen during
training. In summary, our contributions are: (1) Objects are
generally stable unless being manipulated. We introduce
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Figure 2. Reconstruction system overview

a novel differentiable loss function that penalizes unstable
reconstructions, thus encouraging stable scenes. (2) Ob-
jects are connected. We introduce a novel differentiable
loss function that penalizes disconnectedness to reconstruct
connected objects. (3) Reconstruction requires reasoning
not only about the object being reconstructed, but also about
how it interacts with other objects in the scene. Thus, we
introduce a multi-channel scene representation that allows
reconstruction in the context of the spatial extent of other
objects in the scene.

2. Amodal 3D Reconstruction
2.1. System Architecture

In this section we describe the architecture of ARM, our 3D
reconstruction architecture, which consists of four stages.
First, we apply an instance segmentation network to the
input RGB-D image. Second, for each object we detect, we
compute its four channel representation, defined below. In
the third stage, ARM uses this representation to perform 3D
reconstruction with a deep network. In the final stage, we
apply post-processing steps to obtain mesh representations
suitable for physics simulations.

Instance Segmentation ARM takes as input an RGB image,
I ∈ Rh×w×3, and an organized point cloud, P ∈ Rh×w×3

computed by backprojecting a depth image with camera in-
trinsics. This is passed to an instance segmentation network
S which outputs instance masks L = S(I,D) ∈ Lh×w,
where L = {0, . . . ,K} and K is the number of detected
object instances. We use UOIS-Net (Xie et al., 2019) as
S which produces high quality segmentations for unseen
objects.

Four Channel Representation We introduce a four-
channel voxel representation to enable ARM to reconstruct
shape in the context of the spatial extent of other objects
in the scene. For each object o ∈ L, we compute its voxel
occupancy grid Fo ∈ {0, 1}d

3×4 augmented with the sur-
rounding objects, as well as with voxel visibilities with
respect to the camera. The first channel of Fo is the voxel
grid of object o alone, which is computed by voxelizing Po,
where Po is the point cloud segmented with the instance
mask for o. Channel two is the voxel grid of all other objects

Figure 3. Impact of stability and connectivity objectives. Left: oc-
cupancy probabilities of an estimated shape, in greyscale. Adding
the stability objective makes the object stable, and adding the con-
nectivity objective fills in the gap between the shape and inferred
base.

in L except for o. The third channel consists of empty vox-
els, and the final channel contains a voxel grid of occluded
voxels. Note that the third and fourth channels are computed
using the camera extrinsics and intrinsics. The bounding
box volume of Fo is centered at the center of mass of object
o and has side length kδo, where δo is the maximum dis-
tance between points in Po. In our implementation, k = 4.
Finally, we normalize our bounding box volume so the table
occupies the z = 0 plane in our voxel grid by finding the
z plane of height ztable in P \ Po with the most set voxels
and shift Fo downwards by ztable.

3D Reconstruction For each object o ∈ L, we use Fo

as input to a 3D reconstruction network C which outputs
the probability of o’s presence at each voxel as C(Fo) =

Vo ∈ [0, 1]d
3

. We use GenRe-Oracle (Zhang et al., 2018) as
our 3D reconstruction network, increasing the channels on
the input convolutions to handle the additional channels in
our input representation. Finally, we use marching cubes
(Lorensen & Cline, 1987) after thresholding Vo to transform
the output voxel probabilities into a mesh.

Post-Processing We apply post-processing steps to meshes
in order to make them suitable for physics simulation.
First, we remove intersections between object meshes by re-
voxelizing the meshes and removing any intersecting voxels.
Finally, we compute an approximate convex decomposition
of each mesh using V-HACD (Mamou et al., 2016).

2.2. Loss Functions

GenRE (Zhang et al., 2018) uses a weighted combination
of cross entropy and a surface loss between reconstructed
and ground truth voxels to train their 3D reconstruction
network. However, in robotic settings, optimizing these
losses alone are not sufficient to solve the downstream task
of robotic manipulation, as we show in Section 3.3. This
results in reconstructions that often fail at reconstructing
portions of objects in occluded regions, leading to poor
physical fidelity during the planning phase. We tackle this
issue by designing auxiliary loss functions based on two
reasonable assumptions: 1) objects and scenes are stable
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prior to manipulation, and 2) objects are a single connected
component. This motivates us to design loss functions that
encourage stability and connectivity of the reconstructed
objects.

2.2.1. STABILITY LOSS

Objects are almost always stable unless being actively ma-
nipulated. This provides a prior over object shape, even in
occluded regions, by allowing inference of hidden supports
objects may have. An object is in static equilibrium if the
net forces acting upon it are equal to zero (Urone et al.).
This means that the center of mass is within the base of
support of an object: along every direction s perpendicular
to the force of gravity, the center of mass is behind a pivot
point, or point where the object rests on another object.

Let Vo ∈ [0, 1]d
3

be the parameters of a multivariate
Bernoulli distribution V over binarized voxel grids {0, 1}d3

.
Let v ∼ V be a sample from V. Let i ∈ d3 be a voxel
index. Let M(v) be the center of mass of v. Let S be the
set of all vectors perpendicular to the force of gravity g and
in the ground plane. For each s ∈ S, let is and Ms(v) be
the projections of i and M(v) onto the plane defined by s
and g. Let Vo be the parameters of Vō, the distribution of
voxels belonging to objects other than o, and vō ∼ Vō be
a sample from this distribution. For each direction s and
voxel index i, i may be supported by several other voxels,
either by being directly above those voxels or by leaning
against those voxels in direction s. Let Hs(i) be the set of
voxels belonging to other objects supporting i in direction
s. Let E(v) = 1 if v is stable, and 0 otherwise. Then the
probability that v is stable is

P (E(v)) =
∏
s∈S

(1 − us)(1)

us =
∏

i∈d3

1 − V (i)P (i
s
> M

s
(v))hs(i)

hs(i) = 1 −
∏

i′∈Hs(i)

1 − V
ō(i′)

us is the probability that v is unstable in direction s, and
is the chance that every voxel i is unstable; that is i either
doesn’t exist, doesn’t support v along direction s, or isn’t
supported itself. By deriving the probability that a voxel
grid sampled from a distribution over voxels grids is sta-
ble, we may apply this loss to standard 3D reconstruction
networks such as GenRE to encourage learning to output
stable meshes. Equation (1) is intractable, so in order to take
the gradient we introduce independence assumptions and
other approximations to derive an efficiently computable
derivative of object stability with respect to each object
voxel:

d logP (E(v))

dV (i)
=

∑
s∈S

−u′s
1 − us

u
′
s = −P (i

s
> M

s
(v))ĥs(i)

∏
io∈d3,io 6=i

1−P (i
s
o > M

s
(v))(V (io) ≥

1

2
)ĥs(io)

ĥs(io) = 1 −
∏

ib∈Hs(i)

1 − (V
ō(ib)≥ 1

2
)

This gradient captures several intuitive properties of stabil-
ity. If an object has even a single voxel supporting it in a
particular direction then it is stable. If a single supporting
voxel i is present, then u′s is close to zero, and the denomi-
nator of the derivative will be large compared to when no
supporting voxel is present and u′s is close to 1. This cap-
tures the relationship that when no supporting voxels are
present, the effect on stability of adding a voxel is large, but
when supporting voxels are present, the effect is small.

2.2.2. CONNECTIVITY LOSS

Objects are generally connected wholes. This imposes a
prior on object shape even in occluded regions by allowing
us to infer connections between disjoint parts of observed ob-
jects. This prior complements the stability objective which
frequently infers occluded bases of objects. A voxel grid v is
connected if for every pair of voxels a, b ∈ d3, there exists a
path t = {i0, i1, . . . } between a and b. The probability that
a path t exists in v is P (t) =

∏
i∈t V (i). Let T (a, b) be the

set of all possible paths between a and b. Let C(v) = 1 if v
is connected, and 0 otherwise, and C(a, b) = 1 if there is a
path between a and b, and 0 otherwise. Then the probability
that v is connected is:

P (C(v)) =
∏

a,b∈d3,a 6=b

V (a)V (b)(1 −
∏

t∈T (a,b)

1 − P (t)) + 1 − V (a)V (b)

The derivative of this equation is intractable because it re-
quires considering every path t between every vertex pair
(a, b). To resolve this we note that relative to the most likely
path t∗ between a, b most paths have vanishingly small
probability. Thus, for any other point c, we may ignore
low probability paths passing through c when calculating
their contribution to the connectivity of a and b and only
consider the most likely path from a to b passing through
c. We derive the following efficiently comutable per-voxel
derivative of connectivity:

d logP (C(v))

dV (c)
=

∑
a,b∈d3,a 6=b6=c

V (a)V (b) d
dV (c)

P (C(a, b))

V (a)V (b)P (C(a, b)) + 1 − V (a)V
ō(b)

Where P (C(a, b)) = ∨
t∈T (a,b)

P (t) ≈ P (t∗ ∨ tc), ts is the

path from a to b with the highest probability of existing, and
tc is the path from a to b that includes c with the highest
probability of existing.



Amodal 3D Reconstruction for Robotic Manipulation via Stability and Connectivity

Figure 4. Chamfer distances on held-out models, broken down by
observation occlusion. Error bars are a 90% confidence interval.

3. Experiments
Implementation and Training We implement ARM using
UOIS (Xie et al., 2019) for instance segmentation, and the
GenRE depth backbone (Zhang et al., 2018) for shape pre-
diction. We use MuJoCo (Todorov et al., 2012) as a physics
simulator for our reconstructed environment. To train ARM,
we create a large dataset of cluttered tabletop scenes in Mu-
JoCo using shapenet tables and objects. For each scene we
select a random table and drop between 5 and 20 randomly
selected objects onto a random point on the table. We then
render several views with randomized camera positions and
targets. We trained each network on 80,000 reconstruction
instances drawn from this dataset.

Reconstruction Quality We compare the visual reconstruc-
tion quality of ARM to several baselines on reconstruc-
tion of cluttered scenes generated with held-out test objects
in Figure 4. The first baseline is GenRE given ground
truth depth (Zhang et al., 2018). We also examine GenRE
given ground truth depth with voxel carving, or removing
all empty voxels after shape prediction. In addition, we
conduct ablations on the stability and connectivity priors.
We find that ARM performs 22% better overall, and even
better on highly occluded objects.

Robot Manipulation We created a suite of robotics ma-
nipulation tasks across an range of challenging objects in
cluttered scenes. We consider three robot tasks: grasping,
pushing, and rearrangement. We conduct each task on 13
different objects from the YCB dataset (Calli et al., 2015)
and from a set of challenging, highly non-convex objects
downloaded from 3D repositories. For each task and object,
we add distractor objects to occlude the target manipulation
object. We solve each task by using ARM to reconstruct
the scene and MPPI to generate a plan in the reconstructed
environment which we then execute in the ground truth
environment. Figure 5 shows average success rates of the
manipulation tasks. In addition to GenRE, we introduce an

Figure 5. Robot manipulation success rates. Error bars are a 90%
confidence interval.

extrusion baseline: we take the shape predicted by GenRE
and extrude it to the table surface, guaranteeing stability.
All of our proposed models outperform both baselines by
20-40% across all three tasks. To highlight the effects of the
different 3D reconstruction networks, we use ground truth
segmentations for these experiments.

4. Conclusion
Directly applying 3D object reconstruction methods to robot
scenes often produces poor reconstructions, especially in
clutter. When used for 3D manipulation tasks, the result-
ing plans are often unsuccessful. In this paper, we use a
multiobject stability prior, a connectivity prior, and a novel
input representation which allows for multiobject reasoning
to solve this problem. The 3D reconstructions our system
generates are not only better by standard visual loss metrics,
but most importantly they allow for significantly better robot
task performance in challenging cluttered scenes. While
much recent work in learning-based 3D reconstruction has
focused on network architecture, our input representation
and loss functions are agnostic to architecture, allowing
our ideas to be used in any 3D reconstruction system. We
presented a system for producing complete and physically
faithful 3D reconstructions of scenes from single images.
These reconstructions enable one-shot planning with MPPI
for robotics tasks, and we hope to extend these results to
one-shot learning of policies. Unlike other approaches to
obtaining object representations which used unsupervised
techniques to learn the representation in parallel to action
execution, we pretrain ARM on a large synthetically gener-
ated dataset to obtain a system that immediately produces
accurate and detailed object representations. We hope this
will spur interest in pretraining-based approaches, and we
are interested in future work in combining the ability of
pretraining approaches to immediate produce good repre-
sentations with that of unsupervised approaches to fine tune
representations to specific tasks.
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